World War II, tantalum, and the evolution of modern cranioplasty technique

PATRICK FLANIGAN, B.S.,1 VARUN R. KSHETTRY, M.D.,2 AND EDWARD C. BENZEL, M.D.2

1Cleveland Clinic Lerner College of Medicine; and 2Department of Neurosurgery, neurological Institute, Cleveland Clinic, Cleveland, Ohio

Cranioplasty is a unique procedure with a rich history. Since ancient times, a diverse array of materials from coconut shells to gold plates has been used for the repair of cranial defects. More recently, World War II greatly increased the demand for cranioplasty procedures and renewed interest in the search for a suitable synthetic material for cranioprostheses. Experimental evidence revealed that tantalum was biologically inert to acid and oxidative stresses. In fact, the observation that tantalum did not absorb acid resulted in the metal being named after Tantalus, the Greek mythological figure who was condemned to a pool of water in the Underworld that would recede when he tried to take a drink. In clinical use, malleability facilitated a single-stage cosmetic repair of cranial defects. Tantalum became the preferred cranioplasty material for more than 1000 procedures performed during World War II. In fact, its use was rapidly adopted in the civilian population. During World War II and the heyday of tantalum cranioplasty, there was a rapid evolution in prosthetics implantation and fixation techniques significantly shaping how cranioplasties are performed today. Several years after the war, acrylic emerged as the cranioplasty material of choice. It had several advantages over its metallic counterparts. Titanium, which was less radiopaque and had a more optimal thermal conductivity profile (less thermally conductive), eventually supplanted tantalum as the most common metallic cranio-plasty material. While tantalum cranioplasty was popular for only a decade, it represented a significant breakthrough in synthetic cranioplasty. The experiences of wartime neurosurgeons with tantalum cranioplasty played a pivotal role in the evolution of modern cranioplasty techniques and ultimately led to a heightened understanding of the necessary attributes of an ideal synthetic cranioplasty material. Indeed, the history of tantalum cranioplasty serves as a model for innovative thinking and adaptive technology development.

Key Words • cranioplasty • World War II • history • neurosurgery • tantalum • cranial defect

Evolution of Cranioplasty

Early Development

Substantial evidence suggests that cranioplasty was performed in ancient and possibly prehistoric civilizations. While trephination was much more common, some cranioplasties are believed to have been performed by Incan surgeons using materials such as gourds, shells, and gold and silver plates during 3000–2000 BC. It is also speculated that skull fragments, known as “rondelles,” may have been used by ancient Europeans for cranioplasty. Fallopius (1523–1562) is credited with the first true description of a cranioplasty. In his description of the management of cranial fractures, he recommended the removal of bone surrounding a cranial fracture in cases of dural violation and replacement with a gold plate. In the 16th century, various materials as diverse as ox horn, hard rubber, and sheet mica were used for cranioplasty, each with varying rates of success. The earliest instance of a cranioplasty utilizing a bone graft was performed in Moscow. The story was reported by Job Janszoon van Meekerken in 1668. A portion of the skull from a deceased dog was used to successfully repair a cranial defect in a nobleman. The graft was successful, and the patient returned to normal health. However, the graft was later...
removed because of the opposition by the church citing that the use of an animal’s bone was marring God’s image.27,51 Aside from some cranioplasties performed by the native South Sea populations using coconut shells, few cranioplasties were recorded for more than 200 years after van Meekeren’s report.18

Autograft Cranioplasty

In the mid-19th century, Ollier (1859) and Macewen (1873) described and popularized the use of autograft for cranioplasty.27,39,59 In 1890, Müller generated a single flap of scalp, pericranium, and outer table calvaria from the region adjoining a cranial defect.47 Later that year, König refined this method by describing the use of twin flaps.33,60 The Müller-König method became the most used cranioplasty technique for about a decade (Fig. 1). The main shortcoming of this technique was poor cosmesis from both the rotation of scalp flaps and the depression overlying the outer table donor site. In 1903, von Hacker improved the scalp cosmesis of the Müller-König method by only shifting the periosteum and outer table from the bone surrounding the cranial defect (Fig. 2).76 In the 1900s, the von Hacker technique quickly became the most popular method of cranioplasty.

Soon after local autograft became popular, various authors attempted to obtain free autograft from various sources such as the sternum, scapula, ribs, ilium, and tibia.15,47,58,59 By 1909, osteoperiosteal grafts from the tibia were the most common method of cranioplasty (Fig. 3). In several papers Villandre reported a total of 130 cases of autograft cranioplasties from various donor sites and concluded that the best results were obtained from osteoperiosteal tibial grafts.27 In 1920, Delangeniére published a series of 104 cases of cranioplasty with osteoperiosteal tibial grafts with only two failures.26 Around the early 20th century, it became general neurosurgical opinion that autograft cranioplasty was superior to available allografts.59

Search for a Suitable Synthetic Material

Although autograft cranioplasty was most prevalent, the added time, blood loss, and donor site morbidity led many to continue to search for a suitable synthetic material for cranioplasty. The most common synthetic material used during the early 20th century was celluloid followed distantly by gold and aluminum. Celluloid, created from nitrocellulose and camphor among other compounds, was first described in 1870. Because celluloid was readily available and easily malleable, several surgeons attempted to use it for cranioplasty. The first cranioplasty with celluloid was described by Fraenkel in 1890.20 In 1939, Ney reported 300 cases of celluloid cranioplasty with very good results.48,76 However, most other reports were less enthusiastic due to a substantial inflammatory reaction around the implant and subsequent fluid accumulation that required frequent aspiration.54,59,76 Gold and, to a lesser extent, platinum were used for cranioplasty, but their use was limited by high cost.27 Lead cranioplasty was attempted but resulted in significant tissue toxicity.5 Reports of aluminum cranioplasty were marred by high infection rates.11 The ideal synthetic material was malleable, strong,
History of tantalum cranioplasty

Inert, radiolucent, readily available, and economical. Despite numerous attempts, cranioplasty utilizing synthetic materials did not gain widespread use because a suitable synthetic material had not yet been discovered.

In the late 1930s, the interest in synthetic cranioplasty was resurrected with the introduction of Vitallium. Experimental and clinical evidence demonstrated little tissue reaction when used in cranioplasty. However, there were a few key limitations to Vitallium. First, the Vitallium alloy was associated with a corrosion-induced release of highly toxic chromium salts. Second, Vitallium was not malleable and, therefore, often required an operation to create a “cast” that could be used to shape the Vitallium prosthesis ex vivo and a second operation for implantation of the prosthesis.

Discovery of Tantalum

Swedish chemist and mineralogist Anders Gustaf Ekeberg (1767–1813) is credited with the discovery of the tantalum in 1802. The previous year, the element niobium (then called columbium) was discovered by English chemist Charles Hatchett. Due to their high degree of chemical similarity and tendency to be found together, it was not until 1864 that tantalum and niobium would be unequivocally confirmed as separate chemical elements.

Tantalum (chemical symbol Ta, atomic number 73) is a very dense yet malleable metal. Unlike most metals, tantalum is very resistant to corrosion. The name tantalum is derived from the Greek mythological figure Tantalus, son of Zeus. His punishment for sharing the gods' secrets with mortals is a famous one. In the underworld, he was made to stand in a pool of water up to his neck. Whenever he would lean down to quench his thirst, the water would recede before he was able to take a drink. Accordingly, Ekeberg named his newly discovered element tantalum because upon its submersion in acid, it did not absorb or react with the acid.

Experimental Evidence

The in vivo corrosion of metallic implants occurs as a result of the constant presence of new oxygen molecules in vascularized tissues. Oxidative corrosion of metallic implants used for cranioplasty can cause tissue necrosis primarily due to the liberation of metallic ions from the metal's surface. Therefore, for the purpose of implantation in humans, it appeared critical to find a metal that would either corrode extremely slowly or in a manner that was not injurious to the patient. In a preliminary report in 1940, Burke began to test the biological inertness of tantalum by placing pieces of the metal in Ringer's solution at body temperature for a 3-month period. The appearance and weight of both the metal and the solution remained unchanged. In their next experiment, tantalum plates and screws were implanted on the tibia and femur of 6 dogs and rabbits and removed between 3 and 12 weeks later without any noticeable signs of bone or soft-tissue reaction. Shortly thereafter, Pudenz confirmed the relative inertness of tantalum by performing experimental tantalum cranioplasties in 11 cats. One important finding in this animal series was the formation of a
connective tissue capsule around the implant. This was actually thought to be a significant advantage at the time because onlay or inlay implantation techniques without fixation were common. Therefore, scar tissue formation could theoretically help prevent implant migration. In none of the cases was the scar tissue compressive, nor did the implant interfere with spontaneous bone regeneration. Most importantly, the tantalum implant remained intact without corrosion.

Clinical Experience

War Applications

World War II began in 1939 and the US entered the war after the attack on Pearl Harbor on December 7, 1941. It was estimated that 5.9% of American World War II casualties were due to head injuries. The grand scale of the war greatly increased the need for cranioplasty procedures. The clinical problem was aptly described by the neurosurgeon Lieutenant Commander O. Hugh Fulcher in 1943:

Cranial defect in military surgery represents a most important problem because of the frequency of occurrence and because it renders a man unfit for military duty unless it can be adequately repaired. Therefore an adequate method of repair is urgent, one which can be performed by the general surgeon as well as by the neurologic surgeon in any ordinary general hospital wherever it may be located. Moreover, the repair should render protection to the intracranial structures against blows, changing atmospheric pressures and changing bodily positions, which should approximate that afforded by the normal cranium. The convalescence following the operative procedure should be brief to keep 'as many men at as many guns as many days as possible'.

Unlike autograft and Vitallium, tantalum greatly simplified the cranioplasty procedure by allowing a single-stage repair in which the implant could be cut and shaped with basic instruments. The first recorded use of tantalum for cranioplasty was in the fall of 1941 by Fulcher in the US Naval Hospital in Washington, DC.

P. Flanigan, V. R. Kshettry, and E. C. Benzel

The operation was successful, and the patient returned to duty 2 months after the operation. After this initial operation, more than 1000 cases of tantalum cranioplasty were performed in the subsequent 5 years.

The majority of published case series describing tantalum cranioplasties occurred in the military population (Table 1). A total of 402 patients underwent tantalum cranioplasty in published series alone during World War II. For uncomplicated bony defects, a sheet of tantalum could be molded by the surgeon intraoperatively or molded over a standard skull model preoperatively, followed by minor adjustments intraoperatively. Hemberger et al. described an elaborate technique for implant formation using various molding materials shaped over the depression in the scalp corresponding to the defect. This “cast” was then used to shape the tantalum plate preoperatively. For complicated bony defects particularly involving the orbital ridges, the repair was performed in 2 stages. A sterile dental mold was created in the first operation, from which a custom made implant was produced and implanted during a second operation.

Implant Fixation Technique

Initially, tantalum implant migration was occasionally observed after cranioplasty. Loose or migrated plates were also associated with scalp erosion. Originally, tantalum plates were placed in an onlay fashion and secured by suturing adjacent peristomeum or pericranium over the plate. Lewin et al. published the largest clinical series of tantalum cranioplasties (130 cases), performed at the Oxford Military Hospital for Head Injuries. The authors sutured adjacent pericranium or peristomeum to perforations made in the plate. In some cases, they covered the plate with an additional layer of fascia lata that was sutured to surrounding pericranium. They noted that this method was often insufficient for frontal cranioplasties, likely due to the added effect of gravity. In these cases, they used tantalum wire to secure the implant to the calvaria. Many authors adopted 30-gauge tantalum or stainless steel wire instead of suture for such purposes.

Before wire and screws became readily available, more involved inlay techniques were also developed to minimize the risk of implant migration. Simple inlay involved drilling the outer table for a few millimeters beyond the defect to allow the plate to sit in the ledge. Others bent the edges of the tantalum plate 90° and seated this ledge into cancellous bone via a groove made through the outer table. The “inlay with groove” technique was sometimes insufficient alone to prevent migration. Therefore, this technique was commonly supplemented with tantalum triangular wedges, in which the point was seated into the cancellous bone exposed in the groove and the base was folded over the plate. With the various aforementioned techniques, plate migration was relatively uncommon, ranging from 0% to 5%. These studies generally lacked long-term follow-up, so the true incidence of implant migration is not known.

Tantalum screws were generally not available to US military surgeons during World War II. However,
TABLE 1: Tantalum cranioplasty clinical series*

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>No. of Patients</th>
<th>Patient Population</th>
<th>Implant Technique & Fixation†</th>
<th>Plate Thickness (in)</th>
<th>Clinical Outcome</th>
<th>Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robertson, 1944</td>
<td>26 military</td>
<td>1-stage (92%), 2-stage (8%); inlay w/ groove technique w/ wire suture or tantalum wedges</td>
<td>0.015 & 0.020</td>
<td>100% successful repairs; 0 infections, 1 (4%) CSF leak, 1 early revision for plate migration</td>
<td>Brooke General, Fort Sam Houston, TX</td>
<td></td>
</tr>
<tr>
<td>Hemberger et al., 1945</td>
<td>42 military</td>
<td>single perforation in plate; inlay only (14%), inlay + tantalum wire (14%), inlay w/ tantalum wedges (71%)</td>
<td>0.015</td>
<td>1 early plate migration before wires or tantalum wedges; no other outcomes reported</td>
<td>Walter Reed General, Washington, DC</td>
<td></td>
</tr>
<tr>
<td>Woodhall & Spurling, 1945</td>
<td>79 military</td>
<td>single perforation in plate; frequently used 2-stage repair w/ cast molds; inlay w/ groove technique + tantalum wedges</td>
<td>0.015 & 0.020</td>
<td>46% returned to duty, 54% discharged (28 neuro deficit, 6 EEG epileptogenic focus, 5 convulsions); 2 (3%) infections, 1 plate migration, 1 extradural pneumatocele (frontal sinus)</td>
<td>Walter Reed General, Washington, DC</td>
<td></td>
</tr>
<tr>
<td>Mayfield & Levitch, 1945</td>
<td>20 military</td>
<td>multiple perforations in plate; inlay w/ groove technique + tantalum wire; preop scalp mold used to facilitate 1-stage repair</td>
<td>0.0125 & 0.025</td>
<td>2 (10%) returned to duty, 10 (50%) discharged, 8 (40%) under observation; 2 (10%) infections</td>
<td>NA‡</td>
<td></td>
</tr>
<tr>
<td>MacKay & Russell, 1946</td>
<td>25 military</td>
<td>devised a spherical mold matching generic bilat frontal & parietal curvatures w/ equal radii to make ready-made implants; inlay (72%) or onlay (20%) technique w/ tantalum wedges, wire, or ribbon</td>
<td>0.015</td>
<td>successful cosmetic results in all cases; complications not reported</td>
<td>US Naval Base Hospital, Guam, Mariana Islands</td>
<td></td>
</tr>
<tr>
<td>Bakody, 1946</td>
<td>40 military</td>
<td>multiple perforations in plate; inlay w/ groove technique + tantalum triangular wedges</td>
<td>0.015 & 0.020</td>
<td>3 known failures: 1 seroma requiring reoperation & insertion of perforations in the plate; 1 necrotic wound requiring revision; 1 motor vehicle accident requiring plate reshaping</td>
<td>US Naval Hospital, Great Lakes, Illinois</td>
<td></td>
</tr>
<tr>
<td>Gardner, 1946</td>
<td>8 civilian</td>
<td>perforated plates; onlay method w/ tantalum screw fixation</td>
<td>NA</td>
<td>6 recoveries, 2 implant removals & subsequent deaths</td>
<td>Cleveland Clinic, Cleveland, Ohio</td>
<td></td>
</tr>
<tr>
<td>Lane & Webster, 1947</td>
<td>NA military</td>
<td>various</td>
<td>NA</td>
<td>survey of 116 hospitals: 52 tantalum plates required removal; 26 (50%) involved frontal region & 18 (35%) involved frontal sinus</td>
<td>116 different Veterans Hospitals</td>
<td></td>
</tr>
<tr>
<td>Lewin et al., 1948</td>
<td>128 military</td>
<td>1-stage simple defects, 2-stage w/ cast molding for complex contours; onlay method (96%) + silk sutures to pericranium</td>
<td>0.015</td>
<td>11/130 (8%) plates removed (5 infection, 2 cosmesis, 4 intracerebral complication); 1 operative death from postop status epilepticus; local irritation in 7%</td>
<td>Oxford (United Kingdom) & Camps in Northwest Europe</td>
<td></td>
</tr>
<tr>
<td>Fulcher, 1948</td>
<td>12 military</td>
<td>multiple perforations in plate; simple inlay technique; periosteum folded & sutured over plate w/ silk</td>
<td>0.025</td>
<td>11 (92%) good outcomes, 1 (8%) failure in an unperforated plate</td>
<td>NA§</td>
<td></td>
</tr>
<tr>
<td>Weiford & Gardner, 1949</td>
<td>106 civilian</td>
<td>nonperforated plates; onlay technique + tantalum screws; 10 epilepsy cases, dura replaced w/ a tantalum plate</td>
<td>0.020 (early), 0.007</td>
<td>8 (8%) implants removed (4 infection, 4 scalp erosion); 1 operative death; 10 epilepsy cases: seizures better (1), unchanged (8), worse (1)</td>
<td>Cleveland Clinic, Cleveland, Ohio</td>
<td></td>
</tr>
<tr>
<td>Makela, 1949</td>
<td>30 military</td>
<td>onlay technique + tantalum screws or wires</td>
<td>0.015</td>
<td>improvement in headache (56%), vertigo (59%), & epilepsy (53%); new cold sensitivity at implant (41%); 1 removed; 1 infection (3%)</td>
<td>Finnish Red Cross Hospital, Helsinki, Finland</td>
<td></td>
</tr>
</tbody>
</table>

* Case reports of clinical series with fewer than 5 patients excluded. NA = not available; neuro = neurological.

† See Figure 5 for description of inlay techniques.

‡ Although not mentioned in the paper, Dr. Frank H. Mayfield was Chief of Neurosurgery at Percy Jones General Hospital (Battle Creek, MI) from 1942 to 1945.

§ O. Hugh Fulcher was a Professor of Neurosurgery at Georgetown University in 1948 at the time of publication. The location at which he performed his clinical series during World War II was likely at the US Naval Hospital, Washington, DC.
shortly after the war, tantalum screws with a simple on-lay technique supplanted all prior implantation/fixation techniques due to the speed and ease by which screws could be placed in addition to the superior rigidity they provided.71,73

\textit{Tantalum Plate Thickness}

During the tantalum cranioplasty era, there was much disagreement regarding the optimal thickness of tantalum plates. Mayfield and Levitch reported that plates 0.125–0.250 inches in thickness were easily molded and possessed sufficient strength.44 Several surgeons believed 0.015 inches was the ideal thickness of a tantalum plate.41,65,75 In contrast, Fulcher21,22 and Bakody7 believed 0.025 inches was necessary to protect the brain. Oscar A. Turner studied the mechanical response of tantalum plates to impact.68 He claimed that the extent of trauma to cranioprostheses had been underplayed in the literature and proposed that a thickness of less than 0.010 inch was insufficient to protect patients against even minor blows (Fig. 6).68

On the contrary, Gardner progressively decreased the thickness of the tantalum plates he used from 0.020 to 0.007 inches in his published series of 106 tantalum cranioplasties.71 He believed 0.007 inches to be the optimal thickness because it was less expensive, more malleable, and most importantly, decreased the plate’s radiopacity enough to allow pneumoencephalography and angiography (Fig. 7).24

\textit{Clinical Outcome and Complications}

For studies reporting on infection rates (5 studies, 283 patients), the overall infection rate was 3.5\%.37,42,44,56,75 Two studies reported on return to duty outcomes after tantalum cranioplasty.44,75 The larger of the two studies (79 patients) reported that 46\% of soldiers returned to duty and 54\% were discharged from the military, most commonly due to neurological deficits or either clinical seizures or the presence of an epileptogenic focus on electroencephalography (EEG).75 One study in Finland reported on symptomatic outcomes in 30 patients.42 Improvements were observed in preoperative headache (56\%), vertigo (59\%), and epilepsy (53\%) after tantalum cranioplasty. However, 41\% of patients experienced new cold sensitivity at the implant site, with one patient requiring implant removal for this reason. The high thermal conductivity of tantalum leading to cold or heat sensitivity was a shortcoming of tantalum that was likely underreported in the literature.

\textit{Civilian Applications}

The success neurosurgeons experienced with the use of tantalum for cranioplasty during World War II naturally carried over to the civilian population after the war. W. James Gardner, chief of neurosurgery at the Cleveland
History of tantalum cranioplasty

Clinic, was one of the strongest proponents of tantalum. Gardner, along with Wieford, published the largest civilian population case series (106 patients) of tantalum cranio-plasty.\(^7\) He used tantalum cranioplasty in 26 old cranial defects, 12 contaminated traumatic defects (Fig. 8), 55 clean operative defects, and 13 infected operative defects. It was generally believed that the indications for cranioplasty for old cranial defects were syndrome of the trephined (headache, dizziness, difficulty concentrating, and fatigue), brain protection, cosmesis, and painful pulsating defects.\(^6,14,25,27,71\)

Traumatic epilepsy was a controversial indication for cranioplasty. Some authors found that repair had no effect,\(^44\) whereas others found the opposite.\(^71\) Gardner reported that 9 of 10 patients with traumatic epilepsy had reduced seizure frequency or were seizure free postoperatively.

Interestingly, Gardner attempted to perform tantalum cranioplasty in 10 patients with nontraumatic Jacksonian epilepsy. In prior tantalum cranioplasties done for other indications, he noticed that postoperative routine EEG demonstrated a reduction in voltage potential. This, combined with the reduction of seizure frequency after tantalum cranio-plasty in the traumatic epilepsy population, led Gardner to believe that the tantalum metal possibly had a grounding effect.\(^71\) In 10 cases, he performed a large frontoparietal craniotomy, resected the dura, and fastened a tantalum plate to the inner table such that when he replaced the bone flap, the plate came into contact with the cortical surface (Fig. 9). Unfortunately, 8 of 10 patients had no change in seizure frequency, and 1 patient actually had more frequent seizures. Postoperative EEG demonstrated a reduction in voltage potential but no change in abnormal delta waves. Gardner concluded that the plate simply caused electrical interference rather than having any effect on cortical electrical activity. He subsequently abandoned this technique.

Two additional applications of tantalum in civilian neurosurgical procedures are worth noting. In 1948, Lester A. Mount described the use of tantalum discs to cover bur holes made with the Hudson brace.\(^46\) This represented an original form of the bur hole covers commonly used today. The tantalum discs had tabs that were folded down into the bur hole to help prevent the disc from migrating (Fig. 10). Another important application of tantalum in neurosurgery was the use of tantalum dust in craniotomy. Whitcomb and Scoville were the first to report the use of tantalum dust in nervous tissue, which they used to mark the plane of a lobotomy on postoperative radiography.\(^72\) However, the more common indication for tantalum dust was to diagnose recurrent subdural hematoma using a technique first described by Vieth and colleagues.\(^69\) After surgical evacuation of a subdural hematoma, tantalum dust was sprinkled over the cerebral cortex and a tantalum clip was placed on the dura. The distance between the tantalum dust and clip on an anteroposterior radiograph then served as a measure of the subdural space (Fig. 11).

The Importance of Plate Perforations

The original tantalum cranioplasty implants consisted of a smooth nonperforated sheet of metal. The
advantage of this design was that a smooth encapsulated sheath would form around the plate and prevent adhesion to the underlying cortex or dura. This characteristic made it easy to remove the implant when reoperation was necessary. However, numerous authors described several advantages of placing multiple perforations in the plate prior to implantation. Before implant fixation techniques were refined, plate migration was a major concern. The use of

![Fig. 8. Civilian gunshot wound from Gardner's case series. Upper Left: Preoperative radiograph demonstrating comminuted left frontal fracture with intraparenchymal shrapnel. Upper Right: Intraoperative appearance during debridement. Lower Left: Nonperforated tantalum plate using onlay technique secured with tantalum screws. Lower Right: Postoperative radiograph demonstrating the radiopaque nature of a 0.020-inch-thick tantalum plate. Reproduced with permission from Weiford et al: J Neurosurg 6:13–32, 1949.](image)

![Fig. 9. Gardner's method of tantalum dural replacement for intractable cortical epilepsy. Left: A craniotomy is performed, the dura is resected, and a tantalum plate is fastened to the inner table of the free bone flap. Right: The bone flap is then replaced. Gardner hypothesized the tantalum metal may function to ground aberrant cortical electrical activity. However, after 10 cases, Gardner concluded this method was ineffective. Reproduced with permission from Weiford et al: J Neurosurg 6:13–32, 1949.](image)
perforations promoted scar tissue formation between the dura and galea, which helped secure the implant. The major advantage provided by plate perforations was to simplify the management of postoperative infection. A few authors reported that some postoperative infections could be treated without plate removal by a combination of subgaleal fluid aspiration(s) and both subgaleal and intravenous antibiotics. Perforations in the plate allowed the epidural and subgaleal fluid to communicate. Therefore, one could aspirate any fluid underneath the plate. Additionally, soft tissues grew into the perforations during wound healing, which increased the blood supply to the infected area. This also had the advantage of allowing increased antibiotic delivery to the area around the plate. In fact, some neurosurgeons observed that perforated plates became infected less frequently. Although not known during the tantalum cranioplasty era, it is now known that certain bacteria such as Staphylococcus epidermidis can form biofilms on metal implants that can prevent the penetration of antibiotics. Perforations would also serve to decrease the surface area on which biofilms could form. Today, most tantalum cranioplasty implants are either perforated or in a mesh-like pattern.

The Demise of Tantalum and Rise of Acrylics

Despite its widespread use for cranioplasty during World War II, tantalum use in cranioplasty declined precipitously in the early 1950s. Acrylic (polymers based on acrylic acid) was the primary successor of tantalum for cranioplasty. Research on acrylic cranioplasty began during the early tantalum era in the early 1940s. Prior to the war, acrylic resins were used for dental implants with no observed adverse tissue reactions. In the decade after World War II, experimental and early clinical reports of acrylic cranioplasty demonstrated a promising safety and efficacy profile. However, it was Spence’s report in 1954 that made a strong case for using acrylic rather than tantalum for cranioplasty. Spence convincingly detailed the personal, economic, and medical shortcomings of metal plates. First, there existed a significant social stigma associated with having metal in one’s head. Second, tantalum was very costly to manufacture. Third, several authors hypothesized that postoperative headaches and local heat or cold sensitivity could be due to the high thermal conductivity of tantalum. Finally, the radiopacity of tantalum remained at least a moderate hindrance to meaningful postoperative diagnostic imaging. Acrylics overcame all these limitations.

Spence reported favorable results with polymethylmethacrylate (PMMA). Unlike metals, PMMA facilitated the filling of cranial defects, which Spence believed prevented brain herniation into the dead space of the cranial defect. Although initially seen as an advantage, the radiolucency of PMMA actually presented a clinical dilemma. In cases of repeat trauma, radiography could not be used to diagnose implant fracture or the displacement of fragments. Eventually, a small amount of barium was added to the commercially available PMMA mixtures to allow adequate imaging of the implant while maintaining sufficient radiolucency to avoid interference with angiographic imaging.

Polymethylmethacrylate did have its limitations, such as the inhibition of bone growth, and some interest in metals remained. Some authors favored stainless steel because it was also malleable, yet was less than 1% of the cost of tantalum. Titanium, first used for cranioplasty by Simpson in 1965, eventually became the metal of choice and completely halted the production of tantalum cranioprostheses.

Conclusions

The World War II era heralded a renaissance for cranioplasty. The enormous scale of the war greatly increased the demand for cranioplasty procedures. Tantalum provided a major breakthrough in synthetic cranioplasty as it was strong, readily available, malleable, and biologically inert. This enabled military neurosurgeons to repair cranial defects expeditiously in a single stage without the donor site morbidity of autograft. The surgical technique, particularly in regard to implant fixation, was refined during the war. These developments represent a lasting con-
tribution to the field of neurosurgery. Finally, the limitations of tantalum further defined the attributes of the ideal synthetic material for cranioplasty and pushed scientists and neurosurgeons to search for better materials.

The lessons learned from this historical vignette can inform modern innovation in cranioplasty materials and techniques. We must learn from those who preceded us, lest we become doomed to repeat their mistakes.

Disclosure

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author contributions to the study and manuscript preparation include the following. Conception and design: Kshettry. Acquisition of data: Kshettry, Flanigan. Analysis and interpretation of data: Kshettry, Flanigan. Drafting the article: all authors. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Kshettry. Study supervision: Benzel.

References

18. Ella S: Native medicine and surgery in the South Sea Islands. Med Times 1:50–51, 1874
22. Fulcher OH: Tantalum as a metallic implant to repair cranial defects. JAMA 121:931–933, 1943

Fig. 11. A: Postoperative anteroposterior radiograph obtained after subdural hematoma evacuation. Tantalum dust is sprinkled onto the cortical surface, and tantalum clips are placed onto the dura to approximate the dimensions of the subdural space. B: After several months, a decrease in subdural space is evidenced by decreasing the distance between the tantalum dust and clips. Reproduced with permission from Vieth et al: J Neurosurg 24:514–519, 1966.
History of tantalum cranioplasty

42. Mikael T: Tantalum cranioplasty of war wounds of the skull. Ann Chir Gynaecol Fenn 38:9–12, 1940
49. Niederle B: [Cranioplasty with plexiglass.] Rozhl Chir 29:393–401, 1950 (undetermined language)
72. Whitcomb BB, Scoville WB: Methods of marking the plane of section in the open lobotomy operation. Radiology 54:741–742, 1950

Manuscript submitted December 9, 2013.
Accepted February 12, 2014.
Address correspondence to: Varun R. Kshettry, M.D., Neurological Institute, S-40, Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195, email kshettr@ccf.org.

Neurosurg Focus / Volume 36 / April 2014