Patterns in neurosurgical adverse events and proposed strategies for reduction

Judith M. Wong, M.D., M.P.H.,1–3 Angela M. Bader, M.D., M.P.H.,1,2,4 Edward R. Laws, M.D.,3 A. John Popp, M.D.,3 and Atul A. Gawande, M.D., M.P.H.1,2,5

1Department of Health Policy and Management, Harvard School of Public Health; 2Center for Surgery and Public Health and Departments of 3Neurosurgery, 4Anesthesiology, Perioperative and Pain Medicine, and 5Surgery, Brigham and Women’s Hospital, Boston, Massachusetts

Neurosurgery is a high-risk specialty currently undertaking the pursuit of systematic approaches to reducing risk and to measuring and improving outcomes. The authors performed a review of patterns and frequencies of adverse events in neurosurgery as background for future efforts directed at the improvement of quality and safety in neurosurgery.

They found 6 categories of contributory factors in neurosurgical adverse events, categorizing the events as influenced by issues in surgical technique, perioperative medical management, use of and adherence to protocols, preoperative optimization, technology, and communication. There was a wide distribution of reported occurrence rates for many of the adverse events, in part due to the absence of definitive literature in this area and to the lack of standardized reporting systems.

On the basis of their analysis, the authors identified 5 priority recommendations for improving outcomes for neurosurgical patients at a population level: 1) development and implementation of a national registry for outcome data and monitoring; 2) full integration of the WHO Surgical Safety Checklist into the operating room workflow, which improves fundamental aspects of surgical care such as adherence to antibiotic protocols and communication within surgical teams; and 3–5) activity by neurosurgical societies to drive increased standardization for the safety of specialized equipment used by neurosurgeons (3), more widespread regionalization and/or subspecialization (4), and establishment of data-driven guidelines and protocols (5). The fraction of adverse events that might be avoided if proposed strategies to improve practice and decrease variability are fully adopted remains to be determined. The authors hope that this consolidation of what is currently known and practiced in neurosurgery, the application of relevant advances in other fields, and attention to proposed strategies will serve as a basis for informed and concerted efforts to improve outcomes and patient safety in neurosurgery.

(https://thejns.org/doi/abs/10.3171/2012.9.FOCUS12184)

Key Words • surgical safety • adverse events • perioperative care

Neurosurgery is a high-risk surgical specialty and has begun to pursue systematic approaches to measuring and improving outcomes for the national neurosurgical population. In the other 4 papers in this series,63–66 we review the current evidence in 4 distinct areas of neurosurgery concerning the frequency of adverse events in practice and the state of knowledge about how to improve them. Here we describe the patterns revealed from analysis of these data, describe current safety practices in other medical fields, including other surgical specialties, and propose strategies for similar advances in improving safety for neurosurgery. These strategies include process and outcomes monitoring, regionalization and subspecialization, development and dissemination of evidence-based guidelines and protocols, and equipment standardization. We also advocate universal adoption of the WHO Surgical Safety Checklist. Strategic design and development must be followed by a robust systems evaluation and implementation process. We hope this consolidation of what is currently known and practiced in neurosurgery, combined with advances in other fields, will serve as a basis for informed and concerted efforts to improve outcomes and patient safety in neurosurgery.

Abbreviations used in this paper: CMS = Centers for Medicare & Medicaid Services; N2QOD = National Neurosurgery Quality and Outcomes Database; NSQIP = National Surgical Quality Improvement Program; SAGES = Society of American Gastrointestinal and Endoscopic Surgeons; STS = Society of Thoracic Surgeons; WHO = World Health Organization.
Patterns of Neurosurgical Adverse Events

We identified the most common neurosurgical adverse events from existing studies. Similarly, spine surgery deserves special attention given its breadth; elements of our review are included here, but a separate focused review is needed to address all important issues for the field. Many of the events uncovered by our review are multifactorial; for example, cerebral infarct often complicates cerebrovascular care and can be attributed to the severity of the underlying disease and its sequela, the quality of critical care management, and the quality of surgical technique. The goal of our review, however, is to provide a broad analysis to guide design of quality and safety initiatives along the entire chain of care, to improve outcomes for neurological patients in advanced health systems.

Table 1 categorizes the adverse events by likely contributing factors, aside from patient condition. We hypothesize that this analysis of contributing factors will aid in the identification of interventions designed to reduce adverse event occurrence. Patterns of occurrence and prevention vary from discipline to discipline. Nonetheless, some common patterns of opportunity for strategic intervention emerged.

Strategy 1: Process and Outcomes Monitoring

Until recently, there has been a universal absence of outcomes monitoring and accessible databases in neurosurgery—tools that have been essential to quality improvement in other fields. The American College of Surgeons oversees the National Surgical Quality Improvement Program (NSQIP), which began as the National Veterans Administration Surgical Risk Study in 1991 and evolved into NSQIP in 1994 to collect outcomes data from general and vascular surgery (http://site.acsnsqip.org). Many studies have analyzed information from this database and it is also used to benchmark quality improvement. Figure 1 shows an example of how these data may be used for such a purpose. Since its establishment in 1989, the Society of Thoracic Surgeons (STS) National Database has been a major source of outcomes data for adult cardiac, general thoracic, and congenital cardiac surgery. Not only is it useful for clinical research, but it also serves as a source of professional information for improving outcomes. Similarly, the Society of American Gastrointestinal and Endoscopic Surgeons (SAGES) collects outcome data for gastrointestinal and endoscopic surgery (http://www.sages.org). Their database has also been the basis for several studies and collaborative programs. Outside the US, Swedish national registries, such as the National Inpatient Register and Epilepsy Surgery Register, have provided data for many national outcome studies.

The American Association of Neurological Surgeons has recently announced the formation of the NeuroPoint Alliance. Included in this initiative is the launch of the National Neurosurgery Quality and Outcomes Database (NQOD), a national data registry with an infrastructure and reporting system similar to that of the STS National Database; it also includes such details as patient satisfaction scores and disability scores (http://www.neuropoint.org). If the project fulfills its goals, it will have similar capabilities to those of NSQIP, the STS National Database, and the SAGES database in the coming years. It has the potential to supply consistent, detailed, prospectively collected national neurosurgical data for future study, with an advantage over the aforementioned national databases in that the data will be specific to neurosurgical practice and its inherent risks and complications, allowing also for neurosurgery-specific risk stratification. Currently, NQOD is focusing primarily on the lumbar spine with data collected from a small number of participating sites. As it expands, it will need to encompass more hospitals under a more formalized structure, including data managers at each institution, biannual risk-stratified reporting back to participating institutions, and consistent quality assurance. The NeuroPoint Alliance will also financially support more clinical trials to further enhance the benefits of national data reporting.

Strategy 2: Regionalization and Subspecialization

In our review, the quality of surgical technique appeared to be the most common contributing factor (Table 1). We found 2 to 4 events for each discipline reflecting unique technical nuances. Some of these events are avoidable, while others are not. Strategies to minimize adverse events resulting from variations in surgical technique include regionalization and subspecialization, as well as volume thresholds and/or Centers of Excellence. There has already been substantial progress in subspecialization and informal development of Centers of Excellence in neurosurgery.

Data from cardiothoracic and general surgery suggest a significant difference in surgical outcome related to the surgeon’s or hospital’s volume. There also is observational data from a national database suggesting the same influence of volume on outcome for craniotomy for tumor resection, as well as a beneficial effect of subspecialization and higher surgeon and hospital volumes in carotid endarterectomies. The LeapFrog Universal Adoption initiative encourages evidence-based hospital referral using the advantages of a wider patient referral base, public recognition when certain standards are met, and financial incentives through large-corporation insurance buyers. Observational studies in certain high-risk procedures show that hospitals that are LeapFrog compliant with regard to hospital volume have significantly lower mortality rates. Similarly, programs to formally certify centers of excellence and/or set surgeon- or hospital-level volume standards should be considered in neurosurgical practice. There is already substantial movement toward appropriate referral and regionalization, particularly for the highly technical disciplines of open cerebrovascular, endovascular, and skull-base neurosurgery.

In other surgical specialties, much of the centralization process has occurred through shifts in reimbursement. For example, CMS is using performance measures to help determine reimbursement. This paradigm will only work, however, if the quality indicators are tightly linked to clinical outcomes. The specialty of bariatric

J. M. Wong et al.
TABLE 1: Adverse events categorized by likely contributing factors

<table>
<thead>
<tr>
<th>Factor Category</th>
<th>Endovascular</th>
<th>Open Cerebrovascular</th>
<th>Shunt</th>
<th>Spine</th>
<th>Tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEs related in part to surgical technique</td>
<td>thromboembolic events, access-related complications, intra-procedural rupture, failure to treat lesion</td>
<td>intra-op rupture, incomplete obliteration, major vessel occlusion</td>
<td>intra-abdominal complications, ICH</td>
<td>hardware-related complications, new deficit, hematoma, unintended durotomy</td>
<td>benign tumor recurrence, new/worsened deficit, CSF leak, postop hematoma</td>
</tr>
<tr>
<td>AEs related to periop medical management</td>
<td>thromboembolic events, groin-site hematoma, CIN</td>
<td>hemorrhage-related hyperglycemia, salt-wasting syndromes, new infarct, peri-op Sz</td>
<td>peri-op Sz</td>
<td>respiratory events, hardware-related complications, cardiac complications</td>
<td>postop peritumoral edema, postop Sz</td>
</tr>
<tr>
<td>AEs related to nonadherence to protocol</td>
<td>thromboembolic events, groin-site hematoma, CIN, radiation-induced effects</td>
<td>none known</td>
<td>infection</td>
<td>venous thromboembolism, wound infection, wrong-level surgery</td>
<td>venous thromboembolism, wound infection</td>
</tr>
<tr>
<td>AEs affected by preop optimization</td>
<td>thromboembolic events, groin-site hematoma, CIN</td>
<td>none known</td>
<td>none known</td>
<td>respiratory events, cardiac events</td>
<td>medical complications</td>
</tr>
<tr>
<td>AEs related to technology</td>
<td>radiation-induced effects</td>
<td>incomplete obliteration of target lesion, major vessel occlusion</td>
<td>valvular/mechanical dysfunction</td>
<td>hardware-related complications</td>
<td>WSS</td>
</tr>
<tr>
<td>AEs related to communication</td>
<td>none known</td>
<td>WSS</td>
<td>none known</td>
<td>none known</td>
<td>WSS</td>
</tr>
</tbody>
</table>

* Likely contributing factors other than patient condition. Abbreviations: AE = adverse event; CIN = contrast-induced nephropathy; ICH = intracerebral hemorrhage; Sz = seizure; WSS = wrong-site surgery.
Neurosurgery uses not only surgeon volume thresholds but also structural measures including credentialing, consultant availability, and availability of bariatric equipment; these measures are used by the American Society for Metabolic and Bariatric Surgery and the American College of Surgeons to designate a Center of Excellence, a designation that is now required by CMS. At times, centralization is technology-driven, as demonstrated by the rapid shift in robot-assisted laparoscopic prostatectomy to high-volume centers over just a few years.

One of the main disadvantages is an increase in patient travel burden. For this reason, many (including LeapFrog affiliates) advocate exemption of hospitals in rural areas. Additionally, there is concern that increased referral may lead to busier or overburdened tertiary care centers, leading to worse outcomes that may counteract the benefits of high volume.

In other specialties, there are other techniques in development, including simulation and supervised technical practice, even for more senior surgeons. Although these appear promising in preliminary experience, the long-term clinical benefits have yet to be determined. Neurosurgery is beginning to embrace these ideas with the Society for Neurological Surgeons Boot Camp designed for upcoming interns (http://www.societyns.org/BootCamp/BootCampCourses.asp).

Strategy 3: Guidelines and Protocols

Decreasing clinical and technical variability reduces the potential for error, but there remains tension between standardization of practice and allowance for personal practice variation. Nonetheless, adherence to well-designed guidelines and protocols has been a highly effective strategy in numerous other fields. Further, a significant range of neurosurgical adverse events involve complications that can likely be reduced with better adherence to established standards of perioperative medical management and/or evidence-based protocols (Table 1). Postoperatively, for example, a significant portion of cerebrovascular adverse events might be reducible with adherence to intensive care unit guidelines for subarachnoid hemorrhage, including insulin therapy, and management of vasospasm and salt-wasting syndromes. Occurrence of spine-related adverse events may be reduced with consistent early postoperative mobilization when possible, careful delineation of postoperative activity restrictions and bracing, and diligent pulmonary care. The medical and cardiac literature has already demonstrated significant benefit from periprocedural guidelines designed to minimize the risk of contrast-induced nephropathy in endovascular procedures.

Similarly, protocols targeting adequate preoperative optimization should be of benefit. A fraction of the adverse events shown in Table 1 can likely be eliminated with appropriate preoperative optimization, although it remains unknown exactly what proportion of patients undergoing elective or emergent neurosurgical procedures have not undergone appropriate medical clearance. The Joint Commission mandates an appropriate preoperative assessment, including surgical history and physical examination completed within 30 days prior to the procedure, anesthesia assessment, nursing assessment, signed anesthesia and surgical consent, and appropriate preoperative testing.

We noticed that in the intraoperative setting there are many opportunities to further develop specific checklists or protocols for other neurosurgery procedures. In shunt placement procedures, substantial reductions in postoperative infection have been attained by the use of strict pro-
Neurosurgical adverse events and proposed strategies for reduction

tocols.9,21,47 Additionally, the topic of wrong-level spine surgery deserves special attention. Unlike wrong-site surgery—which can be attributed to communication errors and, in a small fraction of cases, to errors in imaging labels—wrong-level spine surgery results from the similarity of anatomical features at different vertebral levels. Avoidance requires careful correlation between fluoroscopic images and preoperative MRI or CT, rather than the less challenging identification of the correct side of surgery that can be confirmed by a conscious patient. A number of initiatives already exist to address wrong-level spine surgery; for example, the North American Spine Society refined the original “Sign Your Site” advisory by the American Academy of Orthopedic Surgeons into a more comprehensive guideline involving intraoperative fluoroscopy in addition to the already mandated preoperative site marking: “Sign, Mark, and X-Ray.”42,62 This issue lends itself to a specific checklist item.

Previously, there have been successful efforts within neurosurgery for such practice. The American Brain Trauma Foundation has developed a set of guidelines for operative intervention in the setting of trauma, with special attention to the quality of evidence supporting each standard, guideline, or option (http://site.acsnsqip.org). In addition, the Joint Guidelines Committee, a standing subcommittee of the American Association of Neurological Surgeons and the Congress of Neurological Surgeons, was founded to evaluate clinical practice guidelines related to neurosurgery. Members undergo training in evidence-based medicine and in the evaluation of clinical practice guidelines. Guideline topics include cervical spine injury, concussion, and severe traumatic brain injury.13

Strategy 4: Equipment Standardization

Table 1 presents a small number of adverse events partially attributable to technology and/or hardware. Variability applies not only to the clinical practice of surgery as described earlier, but to the technologies employed as well. Global standardization of spine hardware and CSF shunts, when possible, may help to reduce variability and thus the chance of human error. Evidence in other fields suggests benefit from equipment standardization. The American Society of Anesthesiologists has established a committee on equipment and standards4 that facilitates open and formal communication between clinicians and manufacturers to address concerns before they become issues, and to create safety specifications11,12 that have led to substantial redesign of anesthesia machines and other equipment. They have been able to forge these relationships without receipt of formal consultant fees, thus maintaining the integrity of the interaction.

Strategy 5: Implementation of the WHO Surgical Safety Checklist

Finally, a recurrent contributing factor found in our
review is communication failure (Table 1). Among surgical protocols, the WHO Surgical Safety Checklist has demonstrated significant reductions in complications across a broad range of surgical specialties and settings in independent studies (Fig. 2). This 19-item checklist was shown in 2 large prospective, multicenter trials to significantly decrease surgical complications and mortality. It facilitates essential team communication, and it has proven useful in a number of uncontrolled studies, improving adherence to fundamental aspects of surgical care including prophylactic antibiotic treatment and venous thromboembolism prophylaxis.

Checklist development, as first devised by the aviation industry and mirrored in the development of the WHO checklist, follows a prespecified 5-step process: content and format, timing, trial and feedback, formal testing and evaluation, and local modification. These steps have been described previously. The content and format involve compiling the known safety practices regarding the targeted safety issue into a background document. Using this document, a checklist is drafted, with specific items meant to be simple checks rather than algorithms. Expert consensus is used to modify the checklist content. Timing refers to identification of appropriate pause points within the workflow to maximize efficacy and efficiency. Once the checklist has been drafted, it is tested in a surgical setting and modified in response to specific feedback, based on the Plan-Do-Study-Act (PDSA) quality control model used in other fields including industry and mathematics/statistics. Formal testing and evaluation constitutes the final step in which the now-modified safety tool is rigorously evaluated in the clinical setting. After wide dissemination, local modification may then be used to tailor the intervention to a specific culture or workflow.

Implementation must be followed by diligent auditing and careful monitoring of checklist compliance, given the multiple barriers to checklist implementation and continued use. We have previously described our group’s experience with implementation of a version of the WHO checklist at our institution, a process modeled after Pronovost’s “Four E’s”: engage, educate, execute, evaluate.

This approach may be tailored to fit any given institution’s culture and workflow. For example, some teams may prefer that the surgeon initiate the surgical briefing while others may prefer that other members of the surgical team do so. In our preliminary work with checklists designed to assist with management of operating room emergencies, the team leader is not always the same person; rather, he or she is verbally and explicitly designated by the team at the beginning of the emergency.

A less tangible benefit of the WHO checklist is incorporation of teamwork by beginning with team member introductions. This step encourages individuals to introduce themselves by their first name, thus beginning to flatten the hierarchy traditionally present in the surgical team. The WHO website www.projectcheck.org presents a number of videos demonstrating proper and improper checklist use and teamwork dynamics (http://www.safe surgery2015.org/south-carolina-checklist-videos.html). Checklist briefing has been shown in uncontrolled studies to increase adherence to improved practices such as prophylactic antibiotic treatment and venous thromboembolism prophylaxis; a subsequent study by the same group showed that the implementation of team-based training reduces complications and mortality. Such tools and programs that specifically address teamwork will likely enhance the benefits of other safety interventions similar to the WHO checklist. Endorsement and concerted effort by neurosurgical societies to support implementation have a significant chance of being highly beneficial.

Conclusions

Adoption of policies in support of these recommendations is a potentially powerful starting point, but effective implementation is required for success. Population-wide improvement in surgery has generally required multicenter collaboration, bringing together surgeons, other clinicians involved in surgical care, and hospital leaders for targeted projects with regular monitoring of progress (http://www.scha.org/transfor). The implementation process often requires specific training of dedicated personnel in order to be successful. As the neurosurgery community moves toward adopting quality improvement policies, it will require increasing resources and dedicated safety champions to implement the programs and tools. Such consolidated, concerted movement will be needed if population-wide change is to occur. We all share this responsibility for enacting change.

Disclosure

This work is funded by a US Agency for Healthcare Quality and Research grant (1R18 HS018537-01). Dr. Gawande receives royalties on his publications and books about patient safety. Author contributions to the study and manuscript preparation include the following. Conception and design: Gawande, Wong, Bader. Acquisition of data: Wong. Analysis and interpretation of data: Gawande, Wong. Drafting the article: Wong. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Gawande, Bader.

References

6. Birch DW, Asiri AH, de Gara CJ: The impact of a formal men-
Neurosurgical adverse events and proposed strategies for reduction

7. Brooke BS, Perlar BA, Dominici F, Makary MA, Pronovost PJ: Reduction of in-hospital mortality among California hospi-
8. Centers for Medicare & Medicaid Services: Premier Hos-
pital Quality Incentive Demonstration. 2012 (http://www.
cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-
Instruments/HospitalQualityInits/HospitalPremier.html) [Ac-
cessed September 25, 2012]
875–880, 1992
2007
ology 49:399–406, 1978
14. Cowan JA Jr, Dimick JB, Leveque JC, Thompson BG, Up-
church GR Jr, Hoff JT: The impact of provider volume on mor-
tality after intracranial tumor resection. Neurosurgery 52:
48–54, 2003
15. Crochet P, Aggarwal R, Dubb SS, Ziprin P, Rajaretnam N,
Grantcharov T, et al: Deliberate practice on a virtual reality laparoscopic simulator enhances the quality of surgical tech-
16. Curry WT, McDermott MW, Carter BS, Barker FG II: Crici-
otomy for meningioma in the United States between 1988 and
2000: decreasing rate of mortality and the effect of provider
17. de Vries EN, Prins HA, Crolla RM, den Outer AJ, van Andel
management study on patient outcomes. N Engl J Med 363:
1928–1937, 2010
18. Deming WE: Out of the Crisis. Cambridge, MA: Massachu-
setts Institute of Technology Center for Advanced Engineer-
ing Study, 1986
20. Ericsson KA, Prietula MJ, Cokely ET: The making of an ex-
pert. Harv Bus Rev 85:114–121, 1993
21. Faillace WJ: A no-touch technique protocol to diminish cere-
bral spinal fluid shunt infection. Surg Neurol 43:344–350,
1995
22. Fleisher LA, Beckman JA, Brown KA, Calkins H, Chaikof
E, Fleischmann KE, et al: ACC/AHA 2007 guidelines on peri-
operative cardiovascular evaluation and care for noncar-
diac surgery: a report of the American College of Cardiology/
American Heart Association Task Force on Practice Guide-
lines (Writing Committee to Revise the 2002 Guidelines
on Perioperative Cardiovascular Evaluation for Noncardiac
23. Foureaud A, Blache JL, Grenier C, Bourgain JL, Minvielle E:
Barriers to staff adoption of a surgical safety checklist. BMJ
24. Funk LM, Gawande AA, Semel ME, Lipsitz SR, Berry WR,
Zinner MJ, et al: Esophagectomy outcomes at low-volume hos-
titals: the association between systems characteristics and
man J, et al: Association of surgical specialty and processes of
care with patient outcomes for carotid endarterectomy. Stroke
32:8290–8297, 2001
D: Relationship between provider volume and mortality for
carotid endarterectomies in New York state. Stroke 29:
2292–2297, 1998
27. Hannan EL, Wu C, Ryan TJ, Bennett E, Culliford AT, Gold JP,
et al: Do hospitals and surgeons with higher coronary artery
bypass graft surgery volumes still have lower risk-adjusted mortal-
28. Haynes AB, Weiser TG, Berry WR, Lipsitz SR, Breizat AH,
Dellinger EP, et al: A surgical safety checklist to reduce mor-
360:491–499, 2009
29. Jansson KA, Blomqvist P, Granath F, Németh G: Spinal sten-
2003
30. Jansson KA, Németh G, Granath F, Blomqvist P: Spinal steno-
sis re-operation rate in Sweden is 11% at 10 years—a national
analysis of 9,664 operations. Eur Spine J 14:659–663, 2005
31. Jha AK, Orav EJ, Ridgway AB, Zheng J, Epstein AM: Does the
Leapfrog program help identify high-quality hospitals? Jt
the Society of American Gastrointestinal Endoscopic Sur-
geronics (SAGES) Outcomes Initiative: what have we learned
et al: The Department of Veterans Affairs’ NSQIP: the first
national, validated, outcome-based, risk-adjusted, and peer-
controlled program for the measurement and enhancement of the
34. Lassen MR, Soeroen JL, Gralnek IM, Dalgaard T, Dalsgaard
training on laparoscopic surgery: randomised controlled trial.
35. Leapfrog Group: The Leapfrog Group’s Patient Safety
Practices, 2003: The Potential Benefits of Universal Adop-
tion. February, 2004 (http://www.leapfroggroup.org/media/
file/Leapfrog-Birkmeyer.pdf) [Accessed September 25, 2012]
36. Liu SS, Wu CL: Effect of postoperative analgesia on major
postoperative complications: a systematic update of the evi-
37. Milstein A, Galvin RS, Delbanco SF, Salber P, Buck CR Jr:
Improving the safety of health care: the leapfrog initiative. Eff
Clin Pract 3:313–316, 2000 (Erratum in Eff Clin Pract 4,
1994, 297)
38. Mori T, Katayama Y, Kawamata T, Hirayama T: Improved ef-
cy of hypervolemic therapy with inhibition of natriuresis
by fludrocortisone in patients with aneurysmal subarachnoid
39. Nawal Luttiyaa M, Bhat DK, Gandhi SR, Nguyen C, Weiden-
bacher-Hopper VL, Lipsky MS: A comparison of quality of
care indicators in urban acute care hospitals and rural critical
access hospitals in the United States. Int J Qual Health Care
19:141–149, 2007
DH, et al: Association between implementation of a medical
team training program and surgical mortality. JAMA
304:1693–1700, 2010
41. Nilsson L, Ahlbom A, Fahrenholtz BY, Tomsson T: Mortality
in population-based cohort of epilepsy surgery patients. Epi-
Prevent Wrong-Site Surgery. 2001 (http://www.spine.org/
Pages/PracticePolicy/ClinicalCare/SMAX/Default.aspx) [Ac-
cessed September 25, 2012]
43. Overend TJ, Anderson CM, Lucy SD, Bhatia C, Jonsson BI,
Timmermans C: The effect of incentive spirometry on postop-

eurosurgeon Focus / Volume 33 / November 2012 7