The pathogenetic features of cerebral cavernous malformations: a comprehensive review with therapeutic implications

KHALED M. KRISHT, M.D.,1 KEVIN J. WHITEHEAD, M.D.,2 TOBA NIAZI, M.D.,1 AND WILLIAM T. COULDWELL, M.D., PH.D.1

1Department of Neurosurgery and 2Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City, Utah

Cerebral cavernous malformations (CCMs) are common vascular lesions of the CNS that may lead to seizures, focal neurological deficits, and fatal hemorrhagic stroke. Human genetic studies have identified 3 genes associated with CCM, and biochemical and molecular studies in mice have elucidated signaling pathways with important therapeutic implications. In this review, the authors shed light on the 3 discovered CCM genes as well as their protein products, with particular emphasis on their signal transduction pathways and their interaction with one another. Close focus is directed at mouse model studies involving the Ccm2 gene product signaling pathway, revealing an important role for the use of simvastatin or other RhoA inhibitors as a therapeutic modality in the treatment of CCM. The remaining challenges to creating a more faithful CCM animal model as well as future clinical and research implications are reviewed. (DOI: 10.3171/2010.6.FOCUS10135)

KEY WORDS • cerebral cavernous malformation • CCM gene • signal transduction pathway • simvastatin

Abbreviations used in this paper: CCM = cerebral cavernous malformation; GTP = guanosine triphosphate; HMVEC = human microvascular endothelial cell; HUVEC = human umbilical vein endothelial cell; ICAP1-α = integrin cytoplasmic domain–associated protein 1α; JNK = c-jun N-terminal kinase; KRIT1 = Krev interaction trapped 1; LOH = loss of heterozygosity; MAPK = mitogen-activated protein kinase; MEKK3 = mitogen-activated protein kinase kinase kinase 3; MKK3 = mitogen-activated protein kinase kinase 3; PDCD10 = programmed cell death 10; PTB = phosphotyrosine binding; siRNA = small interfering RNA; VEGF = vascular endothelial growth factor.

CEREBRAL Cavernous malformations are vascular lesions of the CNS that consist of a group of dilated, thin-walled, leaky capillaries with no intervening pia mater. This cluster of vessels or “caverns” is surrounded by a connective tissue matrix distinct from the surrounding pia mater. They are usually leaky, leaving a hemosiderin-laden rim circumferentially around the lesion that is easily detectable on T2-weighted echo-gradient MR imaging. Should the CM hemorrhage, the patient may experience seizures or may sustain focal neurological deficits from either a stroke or focal irritation. Apart from the usual intracerebral location, CMs have also been observed in the spinal cord and retina, and as hyperkeratotic cutaneous capillary–venous malformations on the skin. The prevalence of CCMs in the general population is approximately 0.5%, based on MR imaging and necropsy studies of large cohorts of patients. The clinical prevalence, however, is much lower, because only 25% of individuals are symptomatic. Symptoms usually develop between the 3rd and 5th decades of life. The incidence of CCM is estimated at 0.2 to 0.4 lesions per patient-year. The diameter of the lesions ranges from a few millimeters to several centimeters. Histologically, CCMs have poorly formed tight junctions between adjacent endothelial cells, with gaps often noted between individual cells. Pericytes, the precursors to smooth muscle cells, are scant. In addition, no astrocytic foot processes and no normal nervous tissues are present within the lesion.
Both sporadic and familial forms of CCM have been identified. The familial form of CCM follows an autosomal dominant form of inheritance, with incomplete penetrance and variable expression. The proportion of familial cases is estimated at 50% among Hispanic-American patients of Mexican descent, and seems to be less in other populations.12,13 With familial forms, multiple cerebral lesions are often noted (Fig. 1), whereas the majority of sporadic cases comprise a single CCM. By linkage and LOH analysis, 3 genetic loci have been implicated on chromosomal arms 7q (CCM1), 7p (CCM2), and 3q (CCM3).8,13 In this review, we describe the 3 aforementioned genes that have been implicated in CCM. We then focus our attention on CCM2, with particular consideration of its molecular and pathophysiological implications and its clinical application in the treatment of CCM.

The *Ccm1* Gene

The Ccm1 gene, *KRIT1*, was the first gene involved in CCM to be identified. It encodes a protein containing known protein–protein interaction domains. Using linkage analysis, a mutation in Ccm1 was found in approximately 40% of familial cases.12 Despite the vascular nature of CCMs, KRIT1 mRNA and protein have been detected in astrocytes, neurons, and various epithelial cells during embryogenesis; however, only protein and not mRNA was detected in vascular endothelial cells during early angiogenesis. Murine embryos lacking the Ccm1 gene suggested an important role for KRIT1 in arterial morphogenesis and identity. The homozygous mutant embryos died in midgestation with vascular defects, including narrowed branchial arch arteries and decreased expression of artery-specific markers.6,10

KRIT1 interacts with ICAP1-α.4 The latter is known to participate in integrin β1-mediated cell adhesion and migration. The interaction of integrin β1 and KRIT1 with ICAP1-α occurs through an NPxY motif/PTB domain. ICAP1-α and KRIT1 have a functional nuclear localization sequence with the capacity to shuttle back and forth from cytoplasm to nucleus. Moreover, ICAP1-α is able to sequester KRIT1 in the nucleus. It seems, therefore, that KRIT1 acts as an intracellular signaling molecule through extracellular adhesion signals that are important for the activation of cellular differentiation and that help determine arterial identity.6,12,13,19

The *Ccm2* Gene

The malcavernin (MGC4607) Ccm2 gene was discovered through LOH mapping and sequencing of positional candidate genes. As in Ccm1, in situ hybridization studies have shown Ccm2 mRNA expression in neurons and astrocytes as well as transient expression in meningeal and parenchymal cerebral vessels.7,11,16 In further molecular studies, it was noted that malcavernin contains a PTB domain similar to that of ICAP1-α, suggesting an interaction between KRIT1 and malcavernin and, therefore, a common functional pathway. The similar phenotypic perturbation (failure of angiogenesis and vascular arrest during the embryonic stage) evident with Ccm1 and Ccm2 knockout mice further supports a common pathway involving the protein products of the respective genes.13 A working molecular model (Fig. 2) based on molecular genetic studies of CCM1 and CCM2 protein interaction and signaling proposes that CCM2 acts as a scaffold for Rac/MEKK3/MKK3 for downstream p38 MAPK signaling. An RNA interference knockdown study has shown that malcavernin and MEKK3 were both required for activation of p38 in response to sorbitol-induced hyperosmotic stress.13 This points to a possible interaction between CCM2 and MEKK3. In addition, CCM2 heterozygous mice were shown to have significantly decreased levels of phosphorylated p38. Zawistowski et al.19 were also able to demonstrate that CCM1 can be detected with MEKK3 as a multiprotein complex involving CCM1 and CCM2 proteins. Therefore, a function of the CCM1/2 complex may be to organize and regulate p38 MAPK signaling. In their model, Zawistowski et al. proposed that ICAP1-α may tether CCM1 in the nucleus until a stimulus (osmotic stress/inflammation) is present, at which time CCM2 functions as a cytoplasmic anchor and recruits CCM1 to a signaling complex for integrin- and p38 MAPK–associated functions. The dynamics of the CCM1 cytoplasmic and nuclear localization suggests that this function is highly coordinated through compartmentalization.

The *Ccm3* Gene

Bergametti and coworkers2 used LOH mapping to identify the Ccm3 gene. The Ccm3 gene, PDCD10, was
found to be ubiquitously expressed on the basis of Northern blot analysis. As with Ccm1 and Ccm2, in situ hybridization showed Ccm3 mRNA expression in neuronal cells at both adult and embryonic stages. In addition, its expression overlapped with that of Ccm2 in meningeal and parenchymal cerebral vessels. Interestingly, its expression was found to be upregulated in the human myeloid cell line TF-1 on induction of apoptosis. Because the expression of CCM3 seems to be very similar to that of CCM1 and CCM2, with overlapping mRNA patterns, and because PDCD10 has been shown to bind Krit1 and malcavernin, it most likely has a closely linked function. The endothelial and/or smooth muscle cell nature of vascular cells expressing Ccm3 mRNA as well as the venous and/or arterial nature of the cerebral vessels expressing Ccm3 mRNA remain to be identified with antibodies specific for PDCD10. Currently, several ongoing studies are examining expression patterns of CCM3. For further information, there are several recently published articles highlighting the cellular context of the various CCM protein actions, including a working model for CCM3.4,5,14

From Bench to Bedside

In an attempt to bridge the gap between bench work and the bedside, a number of studies have used animal models to begin to address the role of abnormal biochemical signaling pathways in states of CCM protein deficiencies. Whitehead et al.18 focused on the Ccm2 gene by studying mice with a gene trap mutation of Ccm2, and developing mice with tissue-specific, conditional mutations of Ccm2. Mice with a complete loss of Ccm2 share a common phenotype with mice lacking Krit1. In both instances, the homozygous knockout mice die in midgestation, having failed to connect the beating heart to the aorta through the branchial arch arteries. Although endothelium is present in the expected location, these cells fail to form a proper lumen, and circulation is not established. Using the Cre-Lox system to direct the mutation of Ccm2 to specific tissues, it was shown that Ccm2 is required in the endothelium for normal vascular development.

Having established a rationale for studying the role of CCM2 in endothelial cells, the authors used siRNA to deplete HUVECs or HMVECs for cell biology and biochemical studies. The CCM2-depleted HUVECs formed fewer lumina with a smaller cross-sectional area when compared with control cells. These observations point to the essential role of Ccm2 in endothelial cells for directing vacuole formation and coalescence to help form the vascular lumen. According to the studies by Bayless and Davis on microtubule depolymerization, lumen formation is dependent on the cellular cytoskeleton. Furthermore, CCM2-deficient HMVECs had an increase in actin stress fibers, with less cortical actin at the cell periphery, which was correlated with decreased barrier function and increased permeability. Because GTPases in the Rho family are important regulators of the cellular cytoskeleton, these observations suggested increased activity of the GTPase RhoA. Whitehead et al.18 also observed increased active (GTP-bound) RHOA in CCM2-depleted HMVECs compared with control cells and found that inhibition of RHOA signaling was able to rescue the stress fiber and permeability defects in CCM2-depleted cells (Fig. 3).

The CCM proteins have also been found to interact with MAPK pathways. Although CCM2 had previously
been shown to be important for p38 MAPK signaling in the cellular response to osmotic shock. Whitehead et al.18 found that a reduction of CCM2 increased the phosphorylation of JNK and its upstream kinases MKK4 and MKK7. Interestingly, Rho-kinase inhibitor decreased the phosphorylation level of JNK, pointing to a link between the GTPase and MAPK signaling. Therefore, a working molecular hypothesis is that loss of CCM2 leads to constitutive activation of RHOA and downstream activation of JNK that is also associated with cytoskeletal changes.

\textbf{Fig. 3.} Heterozygous Com2+/- mice have permeability defects that can be rescued by treatment with simvastatin. A: Bar graph showing spectrophotometric quantification of Evans blue extravasation in the Miles assay of dermal permeability in Ccm2+/- versus Ccm2+/- mice across a range of doses of VEGF compared with saline control. Five mice were studied for each genotype. B: Bar graph showing quantification of dermal permeability in mice with endothelial-specific heterozygosity for Ccm2 (Ccm2fl/-;Tie2-Cre) compared with mice with both Ccm2 alleles intact (Ccm2+/-) and mice with complete Ccm2 heterozygosity (Ccm2fl/-). The authors studied 5 Ccm2fl/- mice, 9 Ccm2fl/- mice, and 10 Ccm2fl/-;Tie2-Cre mice. C: Phallloidin staining for cellular actin fibers after treatment with carrier or simvastatin. Results are representative of 3 independent experiments. Bar = 100 µm. D: Bar graph showing haptotactic migration of HMVECs to fibronectin after treatment with CCM2 or random control siRNA and treatment with either simvastatin or ethanol carrier. A minimum of 3 independent experiments were performed. E: Immunoblot for phosphorylated and total JNK in HMVECs treated with CCM2 or random control siRNA and treated with either simvastatin or ethanol carrier. Results are representative of 3 independent experiments. F: Bar graph showing quantification of Evans blue extravasation in the Miles assay in response to saline or VEGF after pretreatment with simvastatin or ethanol carrier. For both genotypes, 3 mice were used with control treatment and 4 mice with simvastatin treatment. Values are presented as the mean ± SEM. Reprinted with permission from Macmillan Publishers Ltd: Nature Medicine (Whitehead KJ, Chan AC, Navankasattusas S, Koh W, London NR, Ling J, et al: The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15:177–184), copyright 2009. CTL = control; NS = not significant.
that result in impaired lumen formation and vascular permeability.18

To test this hypothesis in vivo, we studied mice with heterozygous mutations in Ccm2 (the genotype equivalent of human disease). Although these mice appear normal and do not develop vascular lesions, increased vascular permeability was observed in the heterozygous mutants. Taking advantage of the ability of the cholesterol-lowering statin drugs to inhibit posttranslational lipid modifications of the Rho GTPases that are required for activity, Whitehead et al.18 showed that Rho inhibition by simvastatin was sufficient to stabilize the Ccm2-deficient endothelium in vivo (Fig. 3).

Subsequently, Stockton et al.17 showed that RhoA activation is also present in endothelial cells depleted of KRIT1, and that mice with heterozygous mutations of Krit1 also have increased permeability. These authors demonstrated that an alternate strategy of Rho inhibition with the Rho-kinase inhibitor fasudil was also able to reverse the vascular stability defects of both Ccm2 and Krit1 deficiency in vivo. Together these studies suggest a central role for RhoA activation in the pathogenesis of CCM lesions in familial CCM associated with mutations in KRIT1 or CCM2.

Although a role for increased RhoA activation in vivo has not been shown for PDCD10, Borikova et al.3 recently demonstrated that, in addition to KRIT1 or CCM2, the loss of PDCD10 in endothelial cells also results in an increase in RhoA protein levels and activity. Taken together, these studies suggest the possibility that RhoA activation in endothelial cells of the CNS may represent a final common pathway for development of CCM lesions. Therapies directed at disrupting RhoA activity or downstream signaling such as the cholesterol-lowering statin family of drugs or the investigational agent fasudil are exciting candidates for medical therapy to stabilize CCM family of drugs or the investigational agent fasudil are exciting candidates for medical therapy to stabilize CCM lesions and are worthy of further study.

Future Prospects

The working hypothesis of CCM onset is a “two-hit” hypothesis in which one germline mutant allele is inherited and the remaining somatic allele undergoes a spontaneous mutation, experiences an environmental insult such as osmotic stress, or has an inflammatory response that alters the stability of the endothelial cells that do not have the full CCM2 protector role as demonstrated with the in vivo VEGF studies. In a study by Zawistowski et al.,19 Ccm2 heterozygous p53 mutant mice showed an increased incidence as well as number of CCMs compared with control mice as a result of increased incidence of second-hit somatic mutations. The environmental as well as genetic second-hit model paves the way for future studies to unravel therapeutic means of reversing environmental insults as well as targeted gene therapy to add allelic stability. Taking advantage of the high rate of spontaneous mutations in mice lacking the tumor suppressor p53, Krit1 heterozygous knockout mice have been mated onto a p53 knockout background in hopes of producing an adult viable mouse model of CCM, because the viable adult heterozygous mice develop no CCM lesions.9 Indeed, cerebral vascular lesions were observed in a large number of animals on this background, but the potential second-hit mutation was not localized. In addition, the mice had a shortened lifespan because of a high frequency of spontaneous tumors, making it difficult to study the natural history of CCM and its response to therapy.4,19 Alternate means of inducing a second hit in an adult mouse without the confounding effects of the p53 mutation have yet to be reported, but it is hoped that such a strategy would create an animal model that closely resembles human CCM. Such a model could then be used to study the development of CCM lesions in vivo as well as the effect of therapeutic modalities.

Preliminary cellular and animal data suggest that statins may alter CCM biology. It is likely, given the widespread use of statins, that a considerable number of patients with CCMs have already been under observation while on this therapy. Further insight into the effect of statins on patients with known CCMs may be gained through retrospectively studying the clinical and radiological progression in those patients who are taking simvastatin for other medical indications. Between further preclinical studies of Rho inhibition in animal models and observational studies in humans, the goal is to establish a rationale for a double-blinded randomized controlled clinical trial to study the efficacy of statins on the course of CCM.

Disclosure

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author contributions to the study and manuscript preparation include the following. Conception and design: Couldwell. Acquisition of data: Krisht. Analysis and interpretation of data: Krisht, Niazi. Drafting the article: Krisht. Critically revising the article: Couldwell, Whitehead, Niazi. Reviewed final version of the manuscript and approved it for submission: Couldwell. Administrative/technical/material support: Couldwell.

References

Manuscript submitted May 14, 2010. Accepted June 10, 2010. Address correspondence to: William T. Couldwell, M.D., Ph.D., Department of Neurosurgery, University of Utah, 175 North Medical Drive East, Salt Lake City, Utah 84132. email: nepub@hsc.utah.edu.