Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases

M. Reid Gooch, B.S., Greg E. Gin, M.S., Tyler J. Kennedy, M.D., and John W. German, M.D.

Division of Neurosurgery, Albany Medical Center, Albany, New York

Object. Decompressive craniectomy is a potentially life-saving procedure used in the treatment of medically refractory intracranial hypertension, most commonly in the setting of trauma or cerebral infarction. Once performed, surviving patients are obligated to undergo a second procedure for cranial reconstruction. The complications following cranial reconstruction are not well described in the literature and may very well be underreported. A review of the complications would suggest measures to improve the care of these patients.

Methods. A retrospective chart review was undertaken of all patients who had undergone cranioplasty during a 7-year period. Demographic data, indications for craniectomy, as well as preoperative, intraoperative, and postoperative parameters following cranioplasty, were recorded. Perioperative and postoperative complications were also recorded. Patients were classified as having no complications, any complications, and complications requiring reoperation. The groups were compared to identify risk factors predictive of poor outcomes.

Results. The authors identified 62 patients who had undergone cranioplasty. The immediate postoperative complication rate was 34%. Of these, 46 patients did not require reoperation and 16 did. Of those requiring reoperation, 7 were due to infection, 2 from wound breakdown, 2 from intracranial hemorrhage, 3 from bone resorption, and 1 from a sunken cranioplasty, and 1 patient’s cranioplasty procedure was prematurely ended due to intraoperative hypotension and bradycardia. The only factor statistically associated with need for reoperation was the presence of a bifrontal cranial defect (bifrontal: 8 [67%] of 12, requiring reoperation; unilateral: 8 [16%] of 49 requiring reoperation; p < 0.01)

Conclusions. Cranioplasty following decompressive craniectomy is associated with a high complication rate. Patients undergoing a bifrontal craniectomy are at significantly increased risk for postcranioplasty complications, including the need for reoperation. (DOI: 10.3171/2009.3.FOCUS0962)

Key Words • cranioplasty • craniectomy • cranial reconstruction • cerebral decompression • intracranial hypertension

Decompressive craniectomy is a potentially life-saving procedure used in the treatment of medically refractory intracranial hypertension, most commonly in the setting of trauma or large-vessel infarction and less frequently in the settings of aneurysmal subarachnoid hemorrhage, intraoperative brain swelling, and encephalitis. Decompressive craniectomy, however, remains controversial. Its efficacy is currently being investigated with respect to survival and quality of life in multicenter, prospective, randomized trials in the setting of traumatic brain injury and middle cerebral artery infarction.

Once patients undergo decompressive craniectomy, those who survive are obligated to undergo a second procedure for surgical cranial reconstruction, that is, cranoplasty. Much of the modern literature regarding cranoplasty following decompressive craniectomy is based on case series that emphasize the technical aspects of the procedure such as the use of materials, the use of techniques to store the bone flap prior to reconstruction, the timing of surgical intervention, or other specific modifications to either the craniectomy or cranoplasty procedure, which may influence the cranoplasty. There are relatively few modern-day large clinical series describing the clinical outcomes and perioperative complications of cranioptlasties in the setting of nonpenetrating traumatic brain injury and large vessel infarction. Complications after cranial reconstruction, often viewed as a straightforward neurosurgical procedure, may very well be underreported. Furthermore, traditional neurosurgical dictums regarding certain aspects of cranioptlasty such as timing of surgery may not be appropriate in the modern era of neurosurgical care. A review of the complications would suggest measures to improve the care of these patients.

In the current study, our goal was to provide a complete review of all perioperative complications, defined as any potentially adverse event within 30 days of surgery, as well as identify any risk factors that may be associated with the need for reoperation after a primary cranioptlasty.
Methods

The study was approved by the institutional review board of Albany Medical Center, a Level 1 trauma, tertiary care, teaching hospital. After approval, the billing and discharge databases of the neurosurgical service were reviewed to identify all patients who had undergone cranioplasty following a decompressive craniectomy during a 7-year period (January 1, 2002–December 31, 2008). This series only included patients who underwent craniectomies for cerebral swelling and excluded those undergoing craniectomy for menigioma resection and craniosynostosis. Once identified, the available hospital charts and clinic records were reviewed retrospectively to abstract relevant data.

Abstracted data included age at time of cranioplasty (years), sex (male or female), medical comorbidities (hypertension, diabetes, and tobacco use), indications for craniectomy (trauma, stroke, infection, and intraoperative swelling), laterality of craniectomy (bilateral, unilateral, or bifrontal), time between craniectomy and cranioplasty (days), type of prosthesis if used (titanium, methylmethacrylate, or porex), storage of bone flap if used (subcutaneous or tissue bank), operative time (minutes), identification of intraoperative CSF leak (yes or no), estimated blood loss (ml), intraoperative fluid administration (ml), length of stay after cranioplasty (days), and disposition before and after the cranioplasty (home, hospital, or inpatient nursing facility).

Any potentially adverse medical or surgical events identified within 30 days of surgery were recorded as early complications. Late complications were unsatisfactory events directly related to the cranioplasty occurring > 30 days postoperation. Patients were classified as having no complication, any complication, and complication requiring reoperation. Specifically, our 2 outcomes of interest were complications after cranioplasty and the need for reoperation after cranioplasty. Both variables were dichotomized, and all patient- and surgery-related factors were assessed as risk factors for each of the 2 outcomes of interest via bivariate analysis. Chi-square analysis and the Fisher exact test were used to assess the association between the categorical risk factors and the outcomes. The Wilcoxon rank-sum test was used to assess if the distribution of the continuous variables was different among those who did and those who did not have the outcomes of interest. To assess complication rates associated with time to cranioplasty, patients were divided into quartiles, and ORs were calculated. All tests were 2-tailed. All associations were assessed at a level of 0.05 of statistical significance. Statistical analysis was performed using STATA 10 software (StataCorp LP).

Results

We identified 109 patients who had undergone a cranioplasty following cerebral decompression via craniectomy. Of these, 23 charts were incomplete for the purpose of this study, and 24 patients were lost to follow-up in the early postoperative period. As a result, 62 patients were identified who had undergone a decompressive craniecto-

| TABLE 1: Demographic and operative details in 62 patients undergoing craniectomy and cranioplasty |
|----------------------------------|------------------------|------------------|
| Characteristic | No. of Patients (%) |
| no. of patients | 62 |
| male | 34 (55) |
| female | 28 (45) |
| craniectomy | |
| mean age (yrs) | 31.5 ± 2.4 |
| indication | |
| trauma | 41 (66) |
| stroke | 15 (24) |
| infection | 2 (3) |
| intraop swelling | 4 (6) |
| type | |
| unilat | 49 (79) |
| bifrontal | 12 (19) |
| bil | 1 (2) |
| cranioplasty | |
| mean age (yrs) | 31.9 ± 2.4 |
| type of prosthesis | |
| autologous | 57 (92) |
| titanium | 2 (3) |
| methylmethacrylate | 3 (5) |
| mean no. of days btwn craniectomy & cranioplasty | 133 ± 18.2 |
| mean op room time (min) | 173 ± 10 |
| mean estimated blood loss (ml) | 238 ± 28 |
| mean intraop intravenous fluids (ml) | 1881 ± 138 |
| mean length of stay (days) | 11 ± 2.1 |

* Unless otherwise indicated, mean values are presented as the means ± SEMs.
Complications of cranioplasty after decompressive craniectomy

Complications Following Cranioplasty

The current report suggests that cranioplasty following decompressive craniectomy is associated with a high complication rate (33.8%). Of those patients who did experience complications, 5 (24%) of the 21 did not require cranioplasty, 41 (66%) experienced no complications and 21 (34%) experienced at least 1 complication. Complications included infection (7), wound dehiscence (2), epidural hematoma (1), subdural hematoma (1), bone resorption (4) which was diagnosed clinically and confirmed on CT scanning, sunken bone plate (1), status epilepticus (1), hydrocephalus (1), deep vein thromboses (2), and intraoperative bradycardia and hypotension necessitating a premature end to the cranioplasty procedure (1). Ten patients (16.1%) had early complications and 11 (17.7%) had late complications. After statistical analysis, the only measured variable found to be significantly associated with complication after cranioplasty was a bifrontal defect compared with a unilateral defect (bifrontal: 8 [67%] of 12 requiring reoperation; unilateral: 8 [16%] of 49 requiring reoperation; p < 0.05) (Table 3).

Time to Cranioplasty

The 62 patients who underwent cranioplasty were divided into 4 groups, each containing approximately the same number of patients, based on duration of time between craniectomy and cranioplasty. Odds ratios calculating the likelihood of complications and complications requiring reoperation with respect to timing of cranioplasty are presented in Table 4. For complications and complications requiring reoperation ORs were highest in the 100- to 136-day group (OR 1.67 and 3, respectively).

Discussion

Cranioplasty following decompressive craniectomy is a conceptually intuitive procedure from the perspective of safety and cosmesis. More recent reports have suggested that the procedure may help optimize neurological recovery, both physiologically and/or clinically.1,4,11,13,15,18,23,31,32,44–46,57,58,61,64,65,69 However, there is no specific technique or material that has consistently stood alone as superior, and postoperative complication rates vary widely.62 In the modern era, most reports in the literature regarding cranioplasty have focused on technical aspects of the procedure and have not emphasized overall surgical complications.2,3,9,10,12,14,20,26,28,30,33–36,38,41,50–52,54,55,60,63,67,68,70,71 Because decompressive craniectomy is now being reevaluated in large, prospective, randomized trials,22,27,66 an analysis of complications for cranioplasty is particularly important. As almost all patients surviving a decompressive craniectomy will require cranioplasty, the complications of this second operative intervention should be acknowledged.

Complications Requiring Reoperation

Complications requiring reoperation are summarized in Table 2. Sixteen patients (26%) had complications that required an additional surgery to address their primary cranioplasty site. Such complications included infection, wound dehiscence, intracranial hemorrhage, bone resorption, and sunken bone plate. In 1 patient, the initial procedure was aborted midoperation due to hemodynamic instability. After statistical analysis, the only variable found to be significantly associated with a need for reoperation was the presence of a bifrontal cranial defect (bifrontal: 8 [67%] of 12 requiring reoperation; unilateral: 8 [16%] of 49 requiring reoperation; p < 0.01) (Table 3).

Complications Requiring Reoperation

Table 2: Complications in 62 patients undergoing craniectomy and cranioplasty*

<table>
<thead>
<tr>
<th>Complication</th>
<th>Early (≤30 days postop)</th>
<th>Late (>30 days postop)</th>
<th>No. Requiring Reop</th>
</tr>
</thead>
<tbody>
<tr>
<td>wound</td>
<td>3 (4.8)</td>
<td>6 (9.7)</td>
<td>9</td>
</tr>
<tr>
<td>infection</td>
<td>2 (3.2)</td>
<td>5 (8.1)</td>
<td>7</td>
</tr>
<tr>
<td>dehiscence</td>
<td>1 (1.6)</td>
<td>1 (1.6)</td>
<td>2</td>
</tr>
<tr>
<td>hematoma</td>
<td>2 (3.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epidural</td>
<td>1 (1.6)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>subdural</td>
<td>1 (1.6)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>bone resorption</td>
<td>0</td>
<td>4 (6.5)</td>
<td>3</td>
</tr>
<tr>
<td>sunken bone plate</td>
<td>0</td>
<td>1 (1.6)</td>
<td>1</td>
</tr>
<tr>
<td>intraop hemodynamic</td>
<td>1 (1.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>instability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>status epilepticus</td>
<td>1 (1.6)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>hydrocephalus</td>
<td>1 (1.6)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>deep vein thrombosis</td>
<td>2 (3.2)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>upper extremity</td>
<td>1 (1.6)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>lower extremity</td>
<td>1 (1.6)</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>total</td>
<td>10 (16.1)</td>
<td>11 (17.7)</td>
<td>16/21 (76.2)</td>
</tr>
</tbody>
</table>

* Of 62 patients, 21 (33.8%) had some complication and 16 (25.8%) required a reoperation.

Table 3: Data regarding reoperation and laterality

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No Reop</th>
<th>Reop</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of patients</td>
<td>46 (74)</td>
<td>16 (26)</td>
</tr>
<tr>
<td>laterality of cranioplasty</td>
<td>unilat</td>
<td>bilat</td>
</tr>
<tr>
<td></td>
<td>41 (84)</td>
<td>4 (33)</td>
</tr>
<tr>
<td></td>
<td>8 (16)</td>
<td>8 (67)</td>
</tr>
<tr>
<td>no. of days btwn craniectomy & cranioplasty*</td>
<td>129 ± 22</td>
<td>143 ± 34</td>
</tr>
</tbody>
</table>

* Presented as the means ± SEMs.
Complications Requiring Reoperation Following Cranioplasty

In the current analysis, complications requiring reoperation occurred in 16 patients (26%) and in 76% of those who had any complication (16 of 21). This overall reoperative complication rate is surprisingly high, considering the perceived straightforward nature of this procedure.

In our series, all patients who experienced wound complications as defined by infection and wound dehiscence required reoperation. Three of these patients initially presented with wound dehiscence without gross evidence of infection. All 3 were treated with primary closure. Two of the patients received scalp tissue expanders prior to this procedure. The third patient underwent uneventful revision of his scalp flap, but bacterial cultures taken from the operating room eventually revealed methicillin-resistant Staphylococcus aureus. He was subsequently treated with intravenous antibiotics. None of these patients was treated by removal of the bone plate. Our review demonstrated that patients undergoing a bifrontal cranioplasty were significantly more likely to have complications. The complications in this group included infection (in 4 patients), wound dehiscence (in 1), sunken bone plate (in 1), resorption (in 1), and intraoperative hemodynamic instability necessitating a premature end to the primary cranioplasty procedure. Of note, our infection rate (11.3%) appears to be similar to that previously reported in large series of patients undergoing cranioplasty.7,29,40,42

Complications Requiring Reoperation Following Cranioplasty

<table>
<thead>
<tr>
<th>No. of Days Btwn Craniectomy & Cranioplasty</th>
<th>No. of Patients</th>
<th>Complications</th>
<th>OR</th>
<th>Complications Requiring Reoperation</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–48</td>
<td>16</td>
<td>6 (38)</td>
<td>0</td>
<td>4 (25)</td>
<td>0</td>
</tr>
<tr>
<td>49–99</td>
<td>15</td>
<td>3 (20)</td>
<td>0.42</td>
<td>0 (0)</td>
<td>—</td>
</tr>
<tr>
<td>100–136</td>
<td>16</td>
<td>8 (50)</td>
<td>1.67</td>
<td>8 (50)</td>
<td>3</td>
</tr>
<tr>
<td>≥137</td>
<td>15</td>
<td>4 (27)</td>
<td>0.61</td>
<td>4 (27)</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Time to Cranioplasty

According to traditional neurosurgical dictum, a shorter time from craniectomy to cranioplasty is associated with poor outcome.17,53,62 While often recommended in neurological texts, the basis of this recommendation is not well cited. The rationale for this waiting period is most likely based on the large series of patients reported by Rish and colleagues56 in 1979. This group found that cranioplasties taking place 1–6 months after craniectomy had the highest complication rate (7.9%) and those performed 12–18 months after craniectomy had the lowest complication rate (4.5%). The purported advantage of this waiting period includes avoidance of operating on a potentially contaminated wound.56 However, because this study included only patients with penetrating head injuries, the results may not apply to patients who have undergone decompressive craniectomy in the setting of nonpenetrating injury. Recently Carvi et al.6 and Liang et al.37 have suggested that cranioplasty following decompressive craniectomy for blunt injury can be performed sooner than previously suggested. The possible advantages of performing cranioplasty in a more timely fashion may include easier dissection of tissue planes, as well as prevention of negative postcraniectomy sequelae including posttraumatic hydrocephalus,8 syndrome of the trephined,31,46 or other neurological complications.32,8,64

Our analysis in regard to time between craniectomy and cranioplasty revealed a higher risk of both postoperative complications and need for reoperation in those patients treated between 100 and 136 days. It is difficult to rectify this point clinically, and our small number of events in each group limits the strength of any conclusions to be made regarding these data. Most significant may be the fact that those patients treated early (0–48 days) or those treated late (≥137 days) did not have a significantly increased risk. This finding, along with the reports by Carvi et al.6 and Liang et al.37 may negate previous dictum suggesting cranioplasty needing to be performed during a certain time point postcraniectomy. Again, this conclusion is limited and requires further analysis in a prospective study.

Critique of the Current Study

The current study is a retrospective analysis of the complications of cranioplasty following decompressive craniectomy. Accordingly, the study suffers from all the anticipated deficiencies of a retrospective analysis including loss of patient information, poor follow-up, inconsis-
Complications of cranioplasty after decompressive craniectomy

tent operative indications for craniectomy, and inconsistent
techniques for cranioplasty. These deficiencies may lead to an inaccurate estimation of the true complication rate.

In an effort to accurately estimate the complication rate, any potentially adverse event in this series was identified as a complication. This method may have falsely inflated the observed complication rate. On the other hand, in a review of cranioplasties in 75 children, Blum et al., did not identify any complications until 2.5 years postoperatively. Given that our patients were included with only a minimal follow-up of 4 months, it is possible we may actually be underreporting the total number of complications. Despite these limitations, the current study is important as it highlights the fact that a significant number of complications do occur following cranioplasty, including complications that may necessitate reoperation.

Conclusions

Patients undergoing decompressive craniectomy are obligated to undergo a second procedure for cranial reconstruction. This second surgery has a remarkably high rate of complications. Additionally, patients undergoing bifrontal craniectomies are at a significantly increased risk for postcranioplasty complications including the need for an additional operation. The time between craniectomy and cranioplasty does not appear to be associated with complications; however, our data are too limited to make definitive conclusions as to this point. Prospective studies are needed to further evaluate cranioplasty complications.

Disclaimer

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Acknowledgments

The authors thank Alan S. Boulou, M.D., Darryl J. Dirisio, M.D., Joseph F. Emrich, M.D., David L. Semenoff, M.D., Yu-Hung Kuo, M.D., PhD., Paul E. Spurgas, M.D., and John B. Waldman, M.D., Department of Neurosurgery, Albany Medical Center, for contributing cases, and Dr. Ashar Ata, Department of Surgery, Albany Medical Center, for statistical analysis.

References

Neurosurg, Focus / Volume 26 / June 2009

5

Unauthenticated | Downloaded 06/03/22 07:05 PM UTC
M. R. Gooch et al.

Neurosurg. Focus / Volume 26 / June 2009

62. Vakis A, Koutentakis D, Karabetsos D, Kalostos G: Use of polytetrafluoroethylene dural substitute as adhesion preven-
Complications of cranioplasty after decompressive craniectomy
tive material during craniectomies. Clin Neurol Neurosurg
108:798–802, 2006
68. Vanaclocha V, Bazan A, Saiz-Sapena N, Paloma V, Idoate M: Use of frozen cranial vault bone allografts in the repair
70. Wurm G, Tomancok B, Holl K, Trenkler J: Prospective study
on cranioplasty with individual carbon fiber reinforced poly-
mer (CFRP) implants produced by means of stereolithogra-
71. Yamashima T: Modern cranioplasty with hydroxylapatite ce-
ramic granules, buttons, and plates. Neurosurgery 33:939–
940, 1993

Accepted March 30, 2009.
Address correspondence to: Tyler J. Kenning, M.D., 47 New
Scotland Avenue, MC-10, Division of Neurosurgery, Albany
Medical Center, Albany, New York 12208. email: kennisn@mai.
amc.edu.