Minimally invasive anterior vertebroplasty for C-2 metastatic lesions

Technical note

RICHARD RHIEW, M.D., PH.D., SUNIL MANJILA, M.D., ADAM DEZURE, B.S., MONIR TABBOSHA, M.D., MURALI GUTHIKONDA, M.D., AND HAZEM ELTAHAWY, M.D., PH.D.

Department of Neurological Surgery, Wayne State University, Detroit, Michigan

The authors describe a technique for minimally invasive anterior vertebroplasty for treating metastatic disease of the C-2 vertebra and discuss its application in 2 cases. After a 2-cm lateral neck incision is made, blunt dissection is performed toward the anterior inferior endplate of the C-2 vertebra. An 11-gauge needle is introduced through a tubular sheath and tapped into the inferior endplate of C-2, with biplanar fluoroscopy being performed to confirm position. The needle is subsequently advanced across the fracture line and into the odontoid process. Under fluoroscopic guidance, 2 ml of methylmethacrylate is injected into the odontoid process and vertebral body. This method is advantageous as 1) hyperextension of the neck is not performed, 2) the chance of inadvertent neurovascular or submandibular gland injury is minimized, 3) the possibility of cement leakage is decreased, and 4) hemostasis is better achieved under direct vision. (DOI: 10.3171/FOC/2008/25/8/E4)

KEY WORDS • compression fracture • minimally invasive surgery • pathological fracture • vertebroplasty

PERCUTANEOUS vertebroplasty enables minimally invasive treatment of both vertebral tumors and compression fractures of the cervical spine. The injection of radiopaque cement across a cervical spine fracture increases the strength and stiffness of the VB and has been shown to provide pain control in up to 90% of patients.20,21,23,30 Both anterolateral and transoral approaches have been successfully implemented for the treatment of metastatic lesions in the upper cervical spine.8,15,16,28,29 While efficacious, both approaches carry potentially life-threatening complications. The anterolateral approach entails guiding a 14-gauge beveled needle under fluoroscopic guidance through the parapharyngeal, retropharyngeal, and prevertebral spaces before reaching the C-2 VB. The risks of the procedure include damage to important blood vessels (internal jugular vein, vertebral and carotid arteries) and nerves (vagal, spinal, accessory, lingual, hypoglossal, marginal mandibular, and laryngeal), as well as the submandibular gland. The transoral approach to C-2 vertebroplasty minimizes the risk of neurovascular complication with a more direct route through the posterior oropharyngeal wall under fluoroscopic guidance into the VB of C-2. The direct transoral route, however, carries the an increased risk of infectious complications, including pharyngeal wound breakdown, meningitis, and encephalomyelitis, that could be devastating to patients with limited immune reserves.18,27 Transoral surgery can only be performed with the patient in a state of general anesthesia, often requiring difficult tracheal intubation with manual cervical stabilization or fiberoptic intubation, which limits its use in patients whose general clinical condition is poor.1,18,24,26,27 Furthermore, wound healing is critically important in patients with C-2 metastatic lesions who may be at increased risk should they require focal radiation therapy after transoral surgery. To circumvent these complications, we investigated a novel minimally invasive anterior approach for performing C-2 vertebroplasty.

Surgical Technique

General anesthesia is induced and an endotracheal tube is placed. The patient’s neck is oriented in a neutral position. Fluoroscopy is used to identify and demarcate the level of C-4, and the skin on the lateral neck is opened through a 2-cm incision (Fig. 1). The platysma is opened with monopolar cautery and the cervical fascia is opened under direct visualization. While the submandibular gland is manually protected, blunt finger dissection is performed—using lead gloves—down the avascular plane between the carotid sheath laterally and the trachea, esophagus, and hypopharynx medially. Fluoroscopy enables blunt dissection superiorly and obliquely towards the anterior inferior endplate of C-2 (Fig. 2A). Once the C2–3 disc space is

Abbreviation used in this paper: VAS = visual analog scale; VB = vertebral body.
reached, a blunt Penfield #2 dissector guided by the lead-gloved finger, is anchored. Onto this dissector, a plastic tubular sheath is introduced to prevent soft tissue damage. The tubular sheath is tucked onto the lower anterior margin of the C-2 VB. The Penfield dissector is then removed. An 11-gauge Stryker vertebroplasty needle is introduced through the sheath and tapped into the inferior endplate of C-2; biplanar fluoroscopy is performed to confirm position. The needle is then advanced across the fracture line and into the odontoid process. Under fluoroscopic guidance, 2 ml of methylmethacrylate is injected, filling the odontoid process and the VB (Fig. 2B). The needle is removed and the wound is irrigated with antibiotic solution. The wound is closed with 4-0 Vicryl.

Illustrative Cases

This method of minimally invasive anterior vertebroplasty was applied in 2 cases involving patients presenting with metastatic lesions of the C-2 VB.

Case 1

History and Presentation. This 79-year-old woman presented with recurrent breast cancer and a metastatic lesion involving the odontoid process and the VB of C-2 (Fig. 3A-D). A CT scan revealed a hairline fracture across the diseased odontoid process. The patient complained of severe intractable neck pain of 3 weeks’ duration, with a VAS score of 9. She was treated conservatively with opioid analgesic agents and her neck was immobilized with a hard cervical collar.

First Operation. Given the presence of continued pain and a significant osteolytic lesion, it was decided to stabilize the patient’s spine surgically. A minimally invasive approach was selected because of the patient’s age and her history of recurrent breast disease as well as the presence of additional spine lesions. In this initial procedure, 2 ml of

![Fig. 1. Photograph showing the site of the incision on the lateral neck. A 2-cm incision is made along a skin crease, using fluoroscopy to identify and demarcate the level of C-4.](image1)

![Fig. 2. A: Intraoperative lateral fluoroscopic image illustrating minimally invasive C-2 vertebroplasty performed with finger dissection using a lead glove via a 2-cm incision. B: Postoperative radiograph showing cement filling the lesion following C-2 vertebroplasty.](image2)
methylmethacrylate was injected across the fracture, but technical factors resulted in poor visualization of the injected cement with fluoroscopy and the procedure was aborted due to considerations for the patient's safety.

Second Operation. Based on a postoperative CT scan, the amount of stabilization was felt to be inadequate. A decision was made to bring the patient back for a second operation for further fixation of the fracture using the minimally invasive anterior approach. This second procedure was performed approximately 12 hours after the first.

An 11-gauge needle was introduced into the C-2 VB under fluoroscopic guidance until the previously injected cement was reached. An additional 2 cm of methylmethacrylate was introduced. The injection was stopped, and minimal extravasation of cement noted anterior to the odontoid process. The patient stayed in the hospital for 1 day after this procedure.

Follow-Up. Clinical follow-up at 6 months reveals a patient with much improved pain and neurological stability. She is driving her car without the need for a cervical collar and has completed palliative external beam radiation therapy to her cervical spine. She is off narcotic medication with a VAS score of 0.

Case 2

History and Presentation. This 54-year-old woman presented with Stage 4 breast cancer and metastases to liver, lung, and bone. She was being treated with an opioid pain patch for intractable metastatic pain (VAS score 9) and was considering hospice care.

Operation and Postoperative Course. Minimally invasive anterior C-2 vertebroplasty was chosen due to the findings of a Type 3 fracture at the base of the odontoid process and an extensively lytic metastatic lesion in the C-2 VB. During the procedure, 50% filling of the odontoid process was achieved, with lesser filling of the osteolytic area of the C-2 VB. She was discharged 4 days following the surgery.
Percutaneous C-2 vertebroplasty is a challenging technique that can be performed for upper cervical spine metastases. This procedure helps to achieve quick pain control and maintain spinal stability while preventing vertebral collapse and neurological deterioration from spinal cord compression. A minimally invasive procedure that is well tolerated and associated with a low morbidity rate, it substantially increases the strength and stiffness of the VB. The analgesia offered by vertebroplasty results from reduced micromotion as well as increased strength of the VB. Other hypotheses for the analgesic effects of percutaneous vertebroplasty include the destruction of nerve endings by the exothermic reaction occurring during polymerization and an inherent tumoricidal or cytotoxic effect of methylmethacrylate. Vertebroplasty is frequently used as an adjunct to surgery and radiation therapy or in association with systemic chemotherapy (hormone therapy, chemotherapy, or radioactive iodide therapy). Pertcutaneous vertebroplasty has been performed in the thoracolumbar spine, but not the cervical spine, via a transpedicular approach. Before vertebroplasty is performed in the cervical spine, the height and width of the targeted C-2 pedicle should be measured to ensure that it is at least 5 mm in each dimension. A size of < 5 mm in each dimension has been reported to lead to increased risk of vertebral artery injury in the placement of 3.5-mm screws through the C-2 isthmus. A transpedicular approach is thus risky in the C-2 vertebra because of small cervical pedicles and the potential risk of vertebral artery injury. A paravertebral approach in the cervical region can injure adjacent neural and vascular structures. Furthermore, the axis is a crucial part of a complex biomechanical system which participates in flexion, extension, rotation, lateral bending, and axial loading as well as distraction. Hence, arthrodesis or fixation may not be clinically acceptable due to restricted range of motion. Percutaneous vertebroplasty allows the option of preserving the mobility of the upper cervical spine, although surgical stabilization is required if vertebroplasty fails to provide sufficient stability. In minimally invasive C-2 vertebroplasty, the trajectory and location of the entry point relative to the vertebra to be treated differ from those used in vertebroplasty of the thoracolumbar spine. Our proposed minimally invasive surgical technique entails a trajectory far different from the standard transpedicular route. This ensures a maximum distance between the site of cement injection and the entry point of the needle into the bone, thereby reducing the risk of soft tissue cement leak along the needle track.

Anatomically, the transoral route provides the most direct access to the C-2 VB. There are anecdotal reports of cases in which the posterior oropharynx was accessed by elevating the soft palate using a Foley catheter passed through the nasopharynx and sutured to the uvula or by straightening the uvula using the vertebroplasty needle covered by a sterile plastic bag. Compared to open surgery, vertebroplasty offers a minimally invasive treatment for metastatic lesions in the C-2 VB. Controlled direct needle insertion using biplanar fluoroscopy minimizes needle excursion and the risk of neurovascular complication.

Transoral vertebroplasty is reported to be associated with lower infection rates than transoral surgery, given minimal disruption of the posterior oropharyngeal tissues by the needle. Thin puncture needles, short operation time, and mixing tobramycin with methylmethacrylate have contributed to low infection rates with vertebroplasty. As in patients with aneurysmal bone cysts, hemangiomas, myelomas, and fibrous dysplasias, transoral vertebroplasty has been reported to alleviate cervical pain in patients with osteoporotic fractures and osteolytic metastases in a rapid and durable manner.

The anterolateral approach for upper cervical spine vertebroplasty has gained popularity because it can be performed without general anesthesia or endotracheal intubation. The anterolateral route entails less risk of infection as the needle does not traverse the oral cavity. The anterolateral approach requires manual retraction of the carotid artery and jugular vein with placement of the needle between the vessels, the pharynx and the larynx. The needle path originates below the mandible ascending in the mediolateral direction. This approach places several anatomical structures at risk including the vagal, spinal accessory, lingual, hypoglossal, marginal mandibular, and laryngeal nerves, in addition to the internal jugular vein and the vertebral and carotid arteries. A percutaneous inferior anterolateral approach with the needle placed under the mandible and then directed cephalad and anteromedially is particularly difficult and risky.

The minimally invasive surgical technique presented in this paper allows vertebroplasty to be performed under direct vision, thereby avoiding complications such as neurovascular and submandibular gland injury, with a lower chance of cement leakage through the entry site. This procedure would facilitate adequate bone biopsy and has the advantage of minimizing intra procedural hypertension of the spine. Hemostasis, which is critically important for airway protection, is easier to achieve in potentially bleeding metastatic bone with the minimally invasive surgical technique presented in this paper than with a closed percutaneous procedure.

In a large series of 289 VB injections, Gangi et al. reported a satisfactory outcome (reduction in analgesic dose) in 78% of patients with osteoporotic fractures, 83% of patients with metastatic lesions, and 73% of patients with aggressive vertebral hemangiomas. Age of the fracture as determined by onset of symptoms was not a predictor of success. Complications, including epidural cement leak causing neuralgia, rib and pedicle fractures, cement pulmonary embolism, and foraminal venous leak into intercostal arteries are described in various reports of vertebroplasty.

There are not many published reports of C-2 vertebro-
plasty in the existing neurosurgical literature. Table 1 reviews the most often cited publications. Mont’Alverne et al. 20 reported a case series of 12 patients undergoing percutaneous vertebroplasty between 1994–2004; this report represents the largest study of C-2 vertebroplasty to date. Pain relief was reported in 80% of patients and stability in 87.5%. Apart from asymptomatic cement leaks, recognized complications of the anterolateral approach include occipital neuralgia and ischemic stroke. The limitation of this technique is that hyperextension of the neck is needed for the anterolateral approach. In patients in whom cervical hyperextension is not feasible, such as those with severe vertebral collapse, needle insertion becomes extremely difficult. 20 The minimally invasive anterior approach that we propose in this paper does not require hyperextension of the neck to gain access to the C-2 vertebra.

There are case reports of adjacent vertebrae being treated with percutaneous vertebroplasty using a Seldinger technique in patients in whom the lesion involves the C2-3 VBs. Intraosseous venography is used to assess for extravasation into the spinal canal. The transpedicular approach is performed utilizing a left posterolateral trajectory under image guidance through hypertrophic diseased bone in polyostotic fibrous dysplasia. 4,7,25 Likewise, there are anecdotal reports of cases in which percutaneous vertebroplasty was performed for a traumatic C-2 VB fracture. 1 Nevertheless, there is still controversy in performing vertebroplasty in cases in which the VB height is less than one-third of normal or the posterior wall is destroyed, thereby increasing the risk of cement extrusion into the canal. 20

Although we believe that the chance of neurovascular injury is decreased with our method of minimally invasive surgical treatment, contraindications for vertebroplasty documented in the literature apply to C-2 lesions as well as thoracolumbar lesions. Absolute contraindications include overt infection in tissue through which the needle must pass and preexisting epidural metastatic tumor with encroachment on neurovascular structures causing myeloradiculopathy. 20 Relative contraindications include severe loss of height (loss > 70% being associated with poor likelihood of good outcome) and coagulopathy or cardiopulmonary compromise such that safe sedation or anesthesia cannot be achieved. Open surgical intervention is recommended for patients with significant neural compression or spinal instability. 11

Conclusions

We describe a minimally invasive C2 vertebroplasty technique as a safe and effective option in the treatment armamentarium for patients with metastatic involvement of the C-2 vertebra, especially when aggressive surgical treatment is unwarranted. This minimally invasive technique should entail a lower risk of injuring neighboring structures than the percutaneous alternative. This novel technique is expected to benefit those patients with relatively limited life expectancy, whose treatment is more palliative than curative, or in whom a long open surgical procedure would be contraindicated due to systemic comorbidities.

Table 1

Summary of relevant C-2 vertebroplasty publications

<table>
<thead>
<tr>
<th>Authors & Year</th>
<th>No. of Patients</th>
<th>Approach</th>
<th>Anesthesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tong et al., 2000</td>
<td>1</td>
<td>transoral</td>
<td>general</td>
</tr>
<tr>
<td>Martin et al., 2002</td>
<td>1</td>
<td>transoral</td>
<td>general</td>
</tr>
<tr>
<td>Gailloud et al., 2002</td>
<td>1</td>
<td>transoral</td>
<td>general</td>
</tr>
<tr>
<td>Mont’Alverne et al., 2005</td>
<td>12</td>
<td>percutaneous</td>
<td>conscious sedation</td>
</tr>
<tr>
<td>Rodrigues-Catarino et al., 2007</td>
<td>1</td>
<td>percutaneous</td>
<td>conscious sedation</td>
</tr>
</tbody>
</table>

References

Address correspondence to: Hazem Eltahawy, M.D., Ph.D., Department of Neurosurgery, Wayne State University, 4201 St. Antoine, UHC 6E, Detroit, Michigan 48201. email: heltahawy@med.wayne.edu.