Wingspan stenting of symptomatic extracranial vertebral artery stenosis and perioperative evaluation using quantitative magnetic resonance angiography: report of two cases

JONATHAN L. BRISMAN, M.D.

Department of Cerebrovascular and Endovascular Neurosurgery, Winthrop University Hospital, Mineola, Long Island, New York

The best management strategy for symptomatic vertebrobasilar ischemia is currently not well-defined. Noninvasive Optimal Vessel Analysis (NOVA, VasSol, Inc.) is computer software that, using quantitative magnetic resonance (MR) angiography technology, represents the only commercially available means of noninvasively measuring blood flow within the human vasculature.

The author used quantitative MR angiography to study cerebral blood flow in 2 patients who underwent angioplasty and stenting for medically refractory extracranial cervical vertebral artery (VA) stenosis using the recently Food and Drug Administration–approved Wingspan stent (Boston Scientific, Target). Wingspan stents were successfully placed after balloon angioplasty in both patients without complications. At the 5-month clinical follow-up examination, 1 patient was symptom free and the other had a possible transient ischemic attack without sequelae. The Wingspan stent may represent an alternative management scheme for symptomatic vertebrobasilar ischemia from extracranial VA stenosis. Quantitative MR angiography can readily measure blood flow in the vertebrobasilar system, and these values correlated with the angiographic outcomes in the 2 patients treated in the present study.

(DOI: 10.3171/FOC/2008/24/2/E14)

KEY WORDS • angioplasty • NOVA • quantitative MR angiography • vertebral artery • Wingspan stent
technology exist. VasSol, Inc. acquired premarket Food and Drug Administration approval for their NOVA software in 2002. Reports on NOVA have been published demonstrating its use as a decision-making tool in patients with vertebrobasilar ischemia, as a means to document vascular bypass patency, as a measure of successful embolization of vein of Galen malformations, as a means to determine whether patients will tolerate carotid occlusion, and as a means to understand a difficult case of hemispheric ischemia and subclavian stenosis and plan the treatment. Its use in association with the WingSpan stent has not been previously described.

Case Reports

Case 1

This 52-year-old man with a history of smoking cigarettes, hypertension, hypercholesterolemia, and coronary artery disease had recurrent episodes of diplopia associated with left hemisensory symptoms. These symptoms had not been previously associated with strokes, and he had been prescribed a regimen of clopidogrel and aspirin. On his most recent admission, the patient again complained of double vision and left arm and leg numbness. The results of his examination were unremarkable except for some end-gaze nystagmus on leftward gaze and subjective decreased sensation in the left arm and leg. Magnetic resonance imaging demonstrated acute infarcts of the bilateral occipital lobes, left cerebellum, and right pons (Fig. 2A). Computed tomography angiography of the head, aortic arch, and neck showed multiple extracranial stenoses of both VAs. Quantitative MR angiography demonstrated markedly diminished blood flow in the BA and both VAs (Fig. 2B, C).

After general anesthesia had been induced, the patient underwent diagnostic angiography which confirmed multiple extracranial VA stenoses, including severe narrowing of the right VA origin (Fig. 2D) and multiple areas along the left VA in the high cervical region (Fig. 2E). In the most stenotic area there was severe stenosis with irregularity suggestive of an ulcerated plaque. Very sluggish flow into the basilar system was seen. Under full heparinization, a 6-F Envoy catheter was navigated into the left VA, and a Gateway Balloon measuring 3.5 × 15 mm was advanced over a 0.14-inch microguidewire across the lesion and inflated. After angioplasty was performed, 2 WingSpan stents (4 × 15 and 3.5 × 15 mm) were loaded onto the same wire and deployed in a telescoping fashion across the area of stenosis with good angiographic reconstruction of the affected segment (Fig. 2F, G). Markedly increased flow into the BA was seen. The poststenting quantitative MR angiography study documented significantly increased flow into the left VA and BA (Fig. 2H). The patient was continued on a regimen of clopidogrel and discharged to a rehabilitation facility without further episodes. He was readmitted 4 months later with transient facial numbness, but CT angiography failed to reveal in-stent stenosis and MR imaging did not show an acute infarction.

Case 2

This 69-year-old man presented with a history of hypertension, hyperlipidemia, and diabetes. Three months prior to the current admission he had had an episode of vertigo and was found to have a right cerebellar and a very small left cerebellar acute infarction (Fig. 3A). He made a good recovery and was discharged on a regimen of clopidogrel. He was readmitted with episodes of diplopia and a feeling of unbalance while walking. Magnetic resonance imaging showed small bilateral cerebellar and occipital lobe acute infarctions. Computed tomography angiography revealed a very focal area of stenosis of the VA a small distance from the entrance into the foramen magnum. Quantitative MR angiography showed markedly diminished flow in the right VA compared with the left and normal basilar flow (Fig. 3B, C). The patient underwent diagnostic angiography, which confirmed a single very severe stenosis just proximal to the entrance of the VA into the posterior fossa (Fig. 3D, E).

Under full heparinization, a 6-F Envoy was navigated into the right VA, and the Gateway balloon measuring 3.5 × 15 mm was used to perform angioplasty of the stenotic segment. Using the same 0.14-inch microguidewire for support, a WingSpan stent measuring 3 × 15 mm was deployed across the stenosis with good results on angiography (Fig. 3F). Quantitative MR angiography documented increased flow in the right VA (Fig. 3G, H). The patient has remained symptom-free at the 5-month follow-up examination.

Discussion

This report documents the utilization of the new WingSpan stent and Gateway balloon system to treat 2 patients with medically refractory vertebrobasilar ischemia secondary to cervical VA stenosis. This is the first description of the use of this novel stent to treat extracranial VA stenosis as well as the first documentation of the use of quantitative MR angiography before and after WingSpan stenting of any vessel.

Historically, extracranial VA disease had been treated
Wingspan stenting of extracranial vertebral artery stenosis

Fig. 2. Case 1. A: Diffusion-weighted brain MR image demonstrating acute left cerebellar hemisphere infarction. B: Quantitative MR angiography (NOVA) flow map showing markedly diminished flow in both VAs (26 and 58 ml/minute) and in the BA (5 ml/min). ACA = anterior cerebral artery; CCA = common carotid artery; ICA = internal carotid artery; L = left; MCA = middle cerebral artery; R = right. Arrows indicate directionality of blood flow. C: Quantitative MR angiography (NOVA) flow table giving the values seen in the flow map with the “range” column representing expected normal values. D: Angiogram of the right subclavian artery, posteroanterior view, demonstrating severe right VA origin stenosis. E: Magnified oblique view of the left VA angiogram demonstrating stenotic irregular plaque in the high cervical VA. F: Oblique view of the left VA angiogram demonstrating successful angiographic reconstruction poststent placement. G: Lateral x-ray film of the cervical spine demonstrating the 2 telescoping WingSpan stents placed at the C-1 level of the VA. H: Quantitative MR angiography (NOVA) flow table demonstrating the marked increase in the left VA flow after stenting with resultant increase in basilar flow.

<table>
<thead>
<tr>
<th>vessel</th>
<th>flow (ml/min (% TCFI))</th>
<th>range (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cranial Flow (TCF)</td>
<td>728</td>
<td>770 - 1460</td>
</tr>
<tr>
<td>LCCA</td>
<td>356 (49%)</td>
<td>300 - 550</td>
</tr>
<tr>
<td>RCCA</td>
<td>288 (40%)</td>
<td>310 - 570</td>
</tr>
<tr>
<td>LVA</td>
<td>26 (4%)</td>
<td>80 - 170</td>
</tr>
<tr>
<td>RVA</td>
<td>58 (8%)</td>
<td>80 - 170</td>
</tr>
<tr>
<td>LICA</td>
<td>165 (23%)</td>
<td>190 - 340</td>
</tr>
<tr>
<td>RICA</td>
<td>244 (34%)</td>
<td>180 - 310</td>
</tr>
<tr>
<td>BA</td>
<td>5 (1%)</td>
<td>160 - 260</td>
</tr>
<tr>
<td>LMCA</td>
<td>169 (23%)</td>
<td>110 - 210</td>
</tr>
<tr>
<td>RMCA</td>
<td>120 (17%)</td>
<td>100 - 200</td>
</tr>
<tr>
<td>LACA</td>
<td>40 (5%)</td>
<td>60 - 170</td>
</tr>
<tr>
<td>RACA</td>
<td>100 (14%)</td>
<td>60 - 160</td>
</tr>
<tr>
<td>RPCA</td>
<td>-11 (1%)</td>
<td>50 - 100</td>
</tr>
<tr>
<td>LACA2</td>
<td>86 (12%)</td>
<td>-</td>
</tr>
<tr>
<td>RACA2</td>
<td>96 (14%)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vessel</th>
<th>flow (ml/min (% TCFI))</th>
<th>range (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cranial Flow (TCF)</td>
<td>1,001</td>
<td>770 - 1460</td>
</tr>
<tr>
<td>LCCA</td>
<td>349 (35%)</td>
<td>300 - 550</td>
</tr>
<tr>
<td>RCCA</td>
<td>447 (45%)</td>
<td>310 - 570</td>
</tr>
<tr>
<td>LVA</td>
<td>179 (18%)</td>
<td>80 - 170</td>
</tr>
<tr>
<td>RVA</td>
<td>26 (3%)</td>
<td>80 - 170</td>
</tr>
<tr>
<td>LICA</td>
<td>198 (20%)</td>
<td>190 - 340</td>
</tr>
<tr>
<td>RICA</td>
<td>227 (23%)</td>
<td>180 - 310</td>
</tr>
<tr>
<td>BA</td>
<td>140 (14%)</td>
<td>160 - 260</td>
</tr>
<tr>
<td>LMCA</td>
<td>157 (16%)</td>
<td>110 - 210</td>
</tr>
<tr>
<td>RMCA</td>
<td>126 (13%)</td>
<td>100 - 200</td>
</tr>
<tr>
<td>LACA</td>
<td>56 (6%)</td>
<td>60 - 170</td>
</tr>
<tr>
<td>RACA</td>
<td>99 (10%)</td>
<td>60 - 160</td>
</tr>
<tr>
<td>LPCA</td>
<td>71 (7%)</td>
<td>50 - 100</td>
</tr>
<tr>
<td>LACA2</td>
<td>54 (5%)</td>
<td>-</td>
</tr>
<tr>
<td>RACA2</td>
<td>80 (9%)</td>
<td>-</td>
</tr>
</tbody>
</table>
with surgical bypass but surgery has since given way to endovascular approaches, in part because of the technical difficulty and unfamiliarity of the former and the improved success and experience with the latter. Stenting and angioplasty have been well-described for the extracranial VAs, with some success with both balloon-mounted coronary stents and self-expanding stents designed for noncerebral revascularization. Such stents can be difficult to place due...
Wingspan stenting of extracranial vertebral artery stenosis
to the tortuosity of the cervicocerebral vasculature, and
their use is associated with complication rates (a 4.8% rate of
major complications in 1 series) that may relate to the
difficulty of stent delivery, overly aggressive balloon an-
gioplasty, and/or excessive radial force during deployment
or afterwards. Recurrent events poststenting (persistent in
9.5% in 1 series) and high rates of restenosis (10–43%) suggest that current endovascular options need improve-
ment. The WingSpan stent system and Gateway balloon
were specifically designed to access and treat more fragile
intracranial vessels. In the recently published seminal safety
study for this stent, placement was performed in 45 pa-
tients with medically refractory intracranial stenosis. Al-
though not specifically designed for extracranial disease,
the system was employed with technical ease and success in
the 2 patients here described.
In addition to this technical success associated with very
acceptable angiographic results, quantitative MR angiog-
raphy demonstrated expected increases in flow in the treated
VA in both patients. That said, 1 patient did have an episode
several months later of transient facial numbness that may
have represented a posterior circulation transient ischemic attack. This patient, however, has multiple risk factors for
vasculopathic disease and stenting was directed to the most
stenotic and irregular region of the VA. If such episodes persist, consideration may be given to treatment of his addi-
tional VA stenoses. Another caveat for the use of this sys-
tem is the issue of in-stent restenosis, which has been well-
described for VA stents and was not addressed in this report. As the clinical follow-up period is short and no catheter angiographic follow-up has been presented, the
durability of the WingSpan stent in the extracranial VAs remains unknown. Quantitative MR angiography may
prove useful in the follow-up of patients after stent place-
ment because decreased flow may herald restenosis.
Currently there are several very good imaging modalities
with which to study the anatomy of the cervicocerebral vas-
culature. These include ultrasonography (carotid duplex
and transcranial duplex), CT angiography, MR angiogra-
phy, and catheter angiography, and they range from nonin-
vasive (duplex, MR angiography) to minimally invasive
(CT angiography) to invasive with low risk (catheter an-
giography). Those studies that are minimally or noninva-
sive, however, yield static images, and despite tremendous
advances in the ability to manipulate these images, the
studies do not give more than a picture of the vascular an-
atomy at a single point in time. Catheter angiography offers
specific additional information about cervicocerebral vas-
cular lesions such as the pace of blood flow and collateral-
ization, but because of the invasiveness of the procedure
there has been a continued search for less invasive mo-
dalities that might offer similar or better information. Ad-
tional modalities have been developed, therefore, using a
wide range of techniques that attempt to assess cere-
brovascular physiology, including single photon emission
computed tomography, xenon CT, transcranial Doppler ul-
trasonography, positron emission tomography, CT perfu-
sion, and MR perfusion scanning. None of these modalities
gives quantitative information concerning blood flow.
Noninvasive Optimal Vessel Analysis is a software pack-
age that represents the only commercially available tech-
nique to quantify cervicocerebral blood flow utilizing stan-
dard MR imaging platforms. It has been shown to effec-
tively risk-stratify patients with vertebrobasilar ischemia
based on distal flow in the BA and posterior cerebral artery.

In the 2 cases in the present study, postprocedural vessel
dilatation was associated with an expected increase in flow
values. Interestingly, in 1 patient, basilar flow was normal,
suggesting that the lesion was not flow limiting. Stent
placement in that patient might have more efficacy as an
intimal stabilizer against further thromboembolic events,
whereas in the other patient flow limitation and thrombo-
embolism were both probably contributing to ischemia.

There are some limitations of the NOVA technology. The
most prominent problem is the lack of properly de-
formed baseline normal values. The baseline values provided
by the manufacturer are based on a cohort of volunteers,
and an analysis of this population has not yet been pub-
lished. Particular clarification is needed with regard to de-
fining the range of normal values and what, if any, adjust-
ments should be made for certain patient-specific factors
such as age, cardiac dysfunction, or dehydration, to name
just a few. Nonetheless, this technology provides a method
quantifying blood flow that may have particular impor-
tance for cases of vertebrobasilar stenosis for which current
cerebrovascular reserve studies are insufficient.

Conclusions
Extracranial cervical VA symptomatic stenosis can be
treated with the new WingSpan stent and Gateway balloon
system with excellent technical success. Quantitative MR
angiography can effectively measure flow in the vertebro-
basilar system before and after such revascularization, and
such measurements correlate with angiographic findings.
The significance of this technology and the durability of the
WingSpan stent for this indication are not yet known.

Financial Disclosure
The author reports no financial or other conflict of interest in
regard to the devices/products described.

References
1. Amin-Hanjani S, Du X, Zhao M, Walsh K, Malisch T, Charbel
FT: Use of quantitative magnetic resonance angiography to strat-
yfy stroke risk in symptomatic vertebrobasilar ischemia. Stroke
36:1140–1145, 2005
of extracranial-intracranial bypass using quantitative magnetic
et al: A novel, self-expanding, nitinol stent in medically refracto-
ry intracranial atherosclerotic stenoses: the WingSpan Study. J
ME: A patient-specific computer model to predict outcomes of the
aneous interventional treatment of extracranial vertebral artery
6. Langer DJ, Lefton DR, Ostereng L, Brockington CD, Song J,
Niimi Y, et al: Hemispheric revascularization in the setting of
carotid occlusion and subclavian steal: a diagnostic and manage-
ment role for quantitative magnetic resonance angiography? Neurosurgery 58:528–533, 2006

Accepted December 4, 2007.
Address correspondence to: Jonathan Brisman, M.D., Director, Cerebrovascular and Endovascular Neurosurgery, Winthrop University Hospital, 100 Merrick Road, Suite 128W, Rockville Centre, New York, 11570. email: jbrisman@neurosurgeryli.com.