Spinal vascular malformations: an historical perspective

PERRY BLACK, M.D.

Department of Surgery (Neurosurgery), Hahnemann University Hospital, Drexel University College of Medicine, Philadelphia, Pennsylvania

This study was undertaken in an effort to trace the historical development of surgery for spinal vascular lesions. These lesions encompass AVMs, AVFs, spinal cord aneurysms, and vascular neoplasms of the spinal cord. Although these terms are incorrect in a strict sense, they are commonly used interchangeably. In the course of the study, attention was directed to the interplay of contributions from other disciplines, notably radiology, and surgical instrumentation such as the operating microscope (Fig. 1). Three time periods or epochs were identified: 1) early observations (1860s–1912); 2) the “middle ages” (1912–1960), with surgical intervention sporadic and yielding dismal results; and 3) the modern era (beginning in the 1960s), coincident with parallel dramatic advances in radiology, microsurgical instrumentation, and anesthesiology. These advances resulted in a better understanding of the pathophysiological aspects and angioarchitecture of the lesions.

Whereas the nomenclature of the lesions in the past was confusing, a new understanding of these diseases that has emerged during the modern era has permitted refinement of the classification of the lesions as distinct biological entities. Modern diagnostic imaging has enabled identification of patients who may benefit from surgical or embolic occlusion, and treatment has become rationally based.

Future progress in the management of spinal vascular lesions may be anticipated, with improvement in noninvasive imaging for early detection of suspected abnormalities. Furthermore, advances in spinal cord neuroprotection may expand the range of future options for surgical or embolic intervention.

KEY WORDS • spine • spinal cord • arteriovenous malformation • arteriovenous fistula • aneurysm • history of neurosurgery

This study was undertaken in an effort to trace the historical development of surgery for spinal vascular lesions. These lesions encompass AVMs, AVFs, spinal cord aneurysms, and vascular neoplasms of the spinal cord. Although these terms are incorrect in a strict sense, they are commonly used interchangeably. In the course of the study, attention was directed to the interplay of contributions from other disciplines, notably radiology, and surgical instrumentation such as the operating microscope (Fig. 1). Three time periods or epochs were identified: 1) early observations (1860s–1912); 2) the “middle ages” (1912–1960); and 3) the modern era: 1960 to the present. These three epochs are linked to the evolution of the classification of spinal vascular lesions (see Appendix).

Early Observations: 1860s to 1912

Based on autopsy material, Virchow22 (Fig. 2 left) provided the earliest classification of spinal vascular lesions, which he described as neoplasms. He distinguished two large groups: angiooma cavernosum, in which there was an absence of parenchyma between the blood vessels; and angiooma racemosum (hamartoma), in which vessels were separated by parenchyma.

The first clinical observation of a spinal vascular malformation occurred in Germany in 1890, and as described by Berenbruch,2 who operated on a patient with a spinal abnormality. The lesion was not identified as a vascular malformation at surgery, but it was subsequently recognized as a vascular abnormality at autopsy. In 1910, Fedor Krause13 (Fig. 2 right) was the first to recognize a spinal lesion observed at laminectomy as a vascular abnormality. Krause did not attempt to resect the lesion, and there was no postoperative improvement.

The “Middle Ages”: 1912 to 1960

The “middle ages” in the evolution of understanding and classification of spinal vascular lesions began in 1912 with Charles Elsberg (Fig. 3 left), who was the first to attempt to excise a spinal AVM. His patient was a 13-year-old boy who presented to the New York Neurological Institute with a 1-year history of bilateral thigh pain, followed by progressive spastic paraparesis and loss of bladder and bowel control. Elsberg related that “there was marked diminution of all three sensations over L2, L3, L4, L5, and S1 areas on both sides.” Surgery was performed “for a suspected new growth.” The following description is from Elsberg’s operative report:

Laminectomy, January 20, 1912.... Removal of spines and laminae of 8th, 9th, 10th and 11th dorsal vertebrae, and incision of dura, exposed a large mass of tortuous blood vessels about 4 cm. in length and fully 1 cm. in thickness. Above, an artery and a vein, each 5 to 6 mm. in width entered; below there were also two large vessels running down to the cauda blood supply, considerable bleeding occurred. Only part of the mass could be excised. No vessels appeared to come out of the cord itself, but there were a number of branches from the anterior surface of the cord.

Abbreviations used in this paper: AVF = arteriovenous fistula; AVM = arteriovenous malformation; NIH = National Institutes of Health.
The lesion described is similar to the drawing shown in Fig. 3. Later in his book, Elsberg reported the following: “Recovery from the operation was uneventful, but there was no improvement. The condition was the same six months later.” Elsberg’s classification of spinal vascular lesions consisted of three categories: aneurysm, angioma, and dilation of veins (see Appendix).

Between 1912 and 1960, there were sporadic attempts to treat spinal AVMs surgically, but in the absence of a clear understanding of the vascular anatomy and the pathophysiological features of the lesions, lack of spinal vascular imaging, and with microneurosurgery yet to be developed, the clinical outcomes were generally dismal.

In their monograph published in 1928, Cushing and Bailey devoted their attention briefly to spinal vascular lesions. They categorized these entities as neoplasms and as vascular malformations, with the latter including a plexus of dilated veins, aneurysmal varix, venous angioma, and telangiectasis. Some years later, in 1936, Bergstrand et al. presented their classification of spinal vascular lesions. It was quite similar to that of Cushing and Bailey. In the early 1940s, Wyburn-Mason classified spinal vascular lesions in one of the following groups: 1) venous malformations; 2) AVMs; or 3) “true tumors” (see Appendix). Although his system was useful in pathological terms, Wyburn-Mason’s classification, like those of his predecessors, was of limited value in terms of advancing clinical management. It was not until the 1960s that parallel developments in radiology, anesthesiology, and microsurgical instrumentation (Fig. 1) permitted the emergence of what might be viewed as the modern era.

The Modern Era: 1960 to the Present

Initiated in Sweden in the 1960s, subspecialization in neuroradiology rapidly spread to the US, England, France, and other countries. This subspecialization led to the emergence of interventional neuroradiology, which was essential for the development of precise imaging techniques.
for spinal vascular lesions. The intrathecal metrizamide computed tomography myelogram was introduced as a diagnostic screening test. Selective spinal angiography became the definitive diagnostic tool for evaluating spinal AVMs. Embolization of vascular lesions added a further dimension to treatment options.

Also in the 1960s, the introduction of the operating microscope, the development of microsurgical instruments, including bipolar forceps (invented by Greenwood in 1940 and subsequently refined by Malis), and progress in anesthesiology empowered neurosurgeons to undertake procedures that were previously thought to be impossible.

The advances in interventional neuroradiology and microneurosurgery allowed detailed evaluations that enhanced understanding of the vascular anatomy as well as the pathophysiological features of the vascular lesions. For example, in 1977 Kendall and Logue demonstrated that lesions formerly thought to be venous angiomas on the surface of the spinal cord were actually normal veins dilated by communication with arterial blood from a dural AVF. It was further observed that the pathophysiological mechanism of most spinal AVMs is associated with venous hypertension. It was shown that, in many cases, the irregular vascular pattern seen on myelography and at surgery represented arterialized draining veins, rather than the AVM itself.

The remarkable strides that occurred in neuroimaging...
and in surgical technique resulted in a better understanding of the angioarchitecture and pathology of the lesions, which likewise enhanced clarity in classification of these entities. From the 1960s through the 1980s, major new and clinically useful insights emerged; these were largely the product of a collaborative effort among neuroradiologists and neurosurgeons in England, France, and the US. In England, neurosurgeon Valentine Logue (Fig. 4 left) worked with neuroradiologist Brian Kendall (Fig. 4 right) and with an associate, M. J. Aminoff, at the National Hospital for Neurology and Neurosurgery in London. In France, the driving force was neuroradiologist René Djindjian (Fig. 5) at Hôpital Lariboisière in Paris. In the US, the key center of spinal vascular activity was at the NIH in Bethesda, Maryland, where neuroradiologist John Doppman (Fig. 6 left) was a leading member of the NIH team, along with radiologist Giovanni Di Chiuro (Fig. 6 center), and neurosurgeons Ayub Ommaya and Edward Oldfield (Fig. 6 right). Although the three centers worked independently of each other, there was considerable intellectual interaction at the personal level as well as through their respective publications.

The three transcontinental centers—the vanguard of the modern era—can be viewed as the “American/English/French connection” in terms of their combined effort in generating new insights concerning the angioarchitecture, pathophysiology, and treatment of spinal vascular lesions (Fig. 7). Their contributions led to the following classifi-
cation, which consists of four types of lesions: Type I, dural AVFs (Fig. 8); Type II, glomus AVMs; Type III, juvenile AVMs; and Type IV, direct spinal AVFs (this type was introduced by Heros et al.11; see Appendix).

As the pathophysiological mechanisms and spinal vascular anatomy became better understood, a number of talented practitioners brought the new therapeutic procedures into popular use. Among these were neuroradiologist Alex Berenstein3 (Fig. 9) of New York City and a Swiss neurosurgeon of Turkish descent, Gazi Yaşargil (Fig. 10 left), who learned microneurosurgical technique in the laboratory of the pioneer microneurosurgeon R. M. Peardon Donaghy (Fig. 10 right) at the University of Vermont in Burlington, Vermont. In the earlier years of the modern era, neurosurgeon Leonard Malis (Fig. 11) of New York City, among others, developed considerable surgical experience with spinal vascular disorders and taught the techniques to his residents and to practicing neurosurgeons.

In 2002, based on their experience with a large number of surgically treated cases of spinal vascular anomalies, clinicians at Hôpital Bicêtre16 in France offered a classification with two broad categories: AVMs and AVFs. In addition, a genetic classification of arteriovenous shunts was proposed. In the same year that the Bicêtre classification was proposed, Spetzler and his coworkers21 advanced a modification of the popular designation of Types I through IV, and they added neoplastic vascular lesions to their simplified nomenclature for purely vascular lesions: aneurysms and arteriovenous lesions (with subcategories); they also introduced AVMs of the conus medullaris as a new category of AVM (see Appendix).

Because diagnostic techniques and treatment options have significantly improved since the 1960s, it is now possible to identify patients for whom successful surgical or embolic occlusion can be expected. Modern diagnostic imaging likewise enables us to identify those with extensive involvement of the spinal cord, for whom neither surgical nor embolic treatment is feasible.14–21

Discussion

In the nineteenth century, when spinal vascular lesions were first identified, these were thought to be tumors. It was then recognized that vascular neoplasms and purely vascular malformations were distinctly separate entities. The subject was further clouded by the confusing nomenclature, as stated by Wyburn-Mason: “one name being used to indicate two or more pathological conditions, and, conversely, a single pathological condition being designat-
ed by different names.”23 Some systems excluded neoplasms, whereas a recent classification by Spetzler et al. 21 reincorporates vascular neoplasms. Furthermore, recent classifications have a clearly defined nomenclature.

In tracing the historical landmarks in the evolution of the concepts of vascular lesions, I have identified three epochs in this paper: 1) a period of early observations between the 1860s and 1912, in which the nature of the spinal lesion was recognized only at autopsy; 2) the “middle ages,” from 1912 to 1960, during which surgical intervention was undertaken only sporadically and with dismal results; and 3) the modern era, beginning in the 1960s, which coincided with parallel dramatic advances in radiology, microsurgical instrumentation, and anesthesiology. These advances resulted in an improved understanding of the pathophysiological features and angioarchitecture of the lesions. These developments enabled classification of the lesions as biologically distinct entities.

Progress in radiological diagnostic techniques, surgical instrumentation, and pathophysiological mechanisms of the lesions flourished in a number of countries from the 1960s through the 1980s, especially in England, France, and the US. The three transcontinental centers—the vanguard of the modern era—can be viewed as the “American/English/French connection” in terms of their combined effort in generating new insights concerning the angioarchitecture, pathophysiological features, and treatment of spinal vascular lesions. In each of these three countries, a team of neuroradiologists working in collaboration with neurosurgeons was able to focus on the spinal AVM “project” as a result of sustained government support.

Future progress in the management of spinal vascular lesions can be anticipated, with improvement in early noninvasive detection of malformations in patients in whom a vascular lesion is suspected. One consideration would be refinements in the quality of magnetic resonance imaging. Further advances in spinal cord neuroprotection (such as local cord cooling) may expand the range of surgical or embolic intervention.

Appendix

Evolving classification of spinal vascular lesions

Virchow (1858)

Vascular Tumors
I. Angioma cavernosum (absence of parenchyma between the blood vessels)
II. Angioma racemosum (hamartoma—vessels separated by parenchyma)
 —telangiectasis (thin-walled vessels like capillaries)
 —angioma racemosum arteriale sive venosum (vascular walls suggest arteries or veins; blood mayShortcut artery to vein: arterio-venous aneurysm)

Elsberg (1916)

Three Categories of Spinal Vascular Abnormalities
I. Aneurysm of spinal vessels
II. Angioma in which a mass of dilated veins penetrates the spinal cord
III. Dilation of posterior spinal veins (“hemorrhoids” of the spinal pia mater)

Cushing & Bailey (1928)

I. Hemangioblastomas
 —vascular neoplasms of spinal cord (blood vessels and network of reticulum)
II. Vascular malformations
 a. plexus of dilated veins
 b. aneurysmal varix
 c. venous angioma
 d. telangiectasis
 e. venous angioma or telangiectasis may develop an “aneurysm by anastomosis” (arteriovenous communication)

Bergstrand, Olivecrona, Tönns (1936)

I. Angioma cavernosum (no neural tissue between the vessels)
II. Angioma racemosum venosum
III. Arteriovenous aneurysm
IV. Hemangioblastoma
V. Telangiectasis

Wyburn-Mason (1944)

A. Abnormalities
 I. Venous abnormalities
 a. secondary venous abnormalities occurring below a tumor of the spinal cord, or associated with arachnoiditis or calcification of the cord
 b. angioma racemosum venosum (extensive venous varicosities affecting the pia and central regions of the spinal cord)
 II. Arteriovenous angioma
 III. Arterial anomalies
 a. associated with congenital heart disease
 b. alone
 IV. Syphilitic aneurysm of the spinal arteries
 V. Telangiectasias, including so-called cavernomas or cavernous angiomata
B. True tumors
VI. Hemangioblastoma or hemangioendothelioma
 a. angioreticuloma, or Landau tumor (in spinal cord or on a nerve root, and may be associated with syringomyelia or with similar tumors elsewhere in the nervous system and cysts in other organs)
 b. extradural hemangioblastoma
VII. Lymphangioma

The “American/English/French Connection”:
Di Chiro, Doppman, Ommaya (1967); Djindjian (1975);
Kendall & Logue (1977); Oldfield, Di Chiro, Quindlen, Rieth,
Doppman (1983); Heros, Debrun, Ojemann, Lasjaunias,
Naessens (1986)

Type I. Dural (intradural or extradural) AVF (also referred to as

Fig. 11. Portrait of Leonard Malis, of Mount Sinai
Hospital in New York City, who made important contri-
butions to microneurosurgery, with his refinement
of Greenwood’s original (1940) bipolar coagulator and
introduction of video through the microscope. Malis
 gained considerable experience with surgery for spinal vascular disorders, developing techniques
that he taught to his residents and to practicing neurosurgeons. (Photograph courtesy of the Society of Neu-
orological Surgeons.)
History of spinal arteriovenous malformations

Type I spinal AVM or as “angioma racemosum venosum,” nidus, or true AVMs, usually in the dural sleeve of a spinal root, associated with a single-coiled vessel on dorsal pial surface of the spinal cord

Type II. Glomus AVMs

Type III. Juvenile AVMs (nidus usually intramedullary)

Type IV. Direct spinal AVF (thought to be first recognized in 1986 [Heros et al.]) these abnormalities are direct fistulas between the blood supply of the spinal cord (usually the anterior spinal artery) and a vein, resulting in aneurysmal dilation of the draining veins

Hôpital Bicêtre:

A. AVMs

B. Fistulas (micro- or macrofistulas)

C. Genetic classification of spinal cord arteriovenous shunts
 a. genetic hereditary lesions (macrofistulae and hereditary hemorrhagic telangiectasia)
 b. genetic nonheritable lesions (multiple lesions with metameric or myelomeric associations)
 c. single lesions (incomplete associations of categories a or b)

Spetzler, Detwiler, Riina, Porter (2002)

Three Broad Categories

1. Neoplastic vascular lesions
 a. hemangioblastoma
 b. cavernous malformation

2. Spinal aneurysms (occur rarely)

3. Arteriovenous lesions
 a. AVFs
 – extradural
 – intradural (dorsal or ventral)
 b. AVMs
 – extradural–intradural
 – intradural
 – intramedullary
 – intramedullary–extramedullary
 – conus medullaris

Acknowledgments

I am grateful to the following individuals for their help in the preparation of this paper: my wife, Phyllis Black, M.S.W., Ph.D.; my secretary, Tricia Grey, B.A.; J.B. Harrington, B.A. (Philadelphia, PA); Jahangir Maleki, M.D., Ph.D. (Philadelphia, PA); Emily Morton (Philadelphia, PA); Rebecca Raszewski, M.S. (Philadelphia, PA); Emily Morton (Philadelphia, PA); Jahangir Maleki, M.D., Ph.D. (Philadelphia, PA); my wife, Phyllis Black, M.S.W., Ph.D.; my secretary, Tricia Grey, B.A.; J.B. Harrington, B.A.

References

13. Krause F: [Surgery of the Brain and Spinal Cord: Based on Personal Experiences.] New York: Rebman, 1912 (Ger) (Haubold HA, transl.)

Manuscript received August 11, 2006. Accepted in final form November 17, 2006. Address reprint requests to: Perry Black, M.D., Hahnemann University Hospital, Drexel University College of Medicine, New College Building, 7th Floor, Mail Stop 413, 245 North 15th Street, Philadelphia, Pennsylvania 19102. email: pblack@drexelmed.edu.

Neurosurg. Focus / Volume 21 / December, 2006