Are cavernous sinus hemangiomas and cavernous malformations different entities?

L. FERNANDO GONZALEZ, M.D., GREGORY P. LEKOVIC, M.D., PH.D., J.D., JENNIFER ESCHBACHER, M.D., STEPHEN COONS, M.D., RANDALL W. PORTER, M.D., AND ROBERT F. SPETZLER, M.D.

Divisions of Neurological Surgery and Neuropathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona

Cavernous hemangiomas that occur within the cavernous sinus (CS) are different from cerebral cavernous malformations (CMs) clinically, on imaging studies, and in their response to treatment. Moreover, CMs are true vascular malformations, whereas hemangiomas are benign vascular tumors. Because of these differences, the authors suggest that these two entities be analyzed and grouped separately. Unfortunately, despite these differences, much confusion exists in the literature as to the nature, behavior, and classification of these two distinct lesions. This confusion is exacerbated by subtle histological differences and the inconsistent use of nomenclature. The authors use the term “cavernous malformation” to refer to intraaxial lesions only; they prefer to use the term “cavernous sinus hemangioma” to refer to extraxial, intradural hemangiomas of the CS.

KEY WORDS • cavernous hemangioma • cavernous malformation • cavernous sinus • middle fossa

Abbreviations used in this paper: CM = cavernous malformation; CNS = central nervous system; CS = cavernous sinus; MR = magnetic resonance.
become symptomatic with the onset of acute or subacute ophthalmoparesis related to compression of the cranial nerves within the CS. Other common symptoms include facial pain, visual symptoms due to compression of the optic nerves or chiasm, and hypopituitarism. Thus, CS hemangiomas tend to be identified during surgery for lesions preoperatively diagnosed as meningoasms or nerve sheath tumors.

In contrast, patients with CMs most often reach neurological attention after they experience seizures or an acute event that leads to a focal deficit (long tract compromise) as a consequence of hemorrhage. The natural history of CMs is that these lesions tend to rupture, and by doing so cause a stepwise neurological deterioration. In retrospective studies of all CMs, based on the assumption that these lesions are present at birth, the overall annual rates of rupture have varied from 0.25 to 2.3%.7

Although they do not commonly present with hemorrhage, CS hemangiomas are high-flow vascular tumors that tend to hemorrhage profusely during resection. In a review of 53 cases, Linskey and Sekhar11 reported a 36% surgery-related mortality rate, primarily associated with massive intraoperative hemorrhage. The profuse bleeding that is often encountered at surgery is a common cause of incomplete resection, and in one report was the cause of death, in eight individuals in a series of 46 patients.26

Pathological Features

Cavernous malformations consist of a network of thin-walled, dilated vessels lined by a single layer of endothelium. The vessels are often adjacent to each other but may be separated by fibrous connective tissue and may exhibit variable hyalinization. The vascular channels lack an organized elastic lamina and tend to be devoid of smooth-muscle cells. The lumen of the vessels may be thrombosed from stagnant blood flow, and chronic lesions may be calcified. In contrast to arteriovenous malformations, intervening parenchymal tissue is scarce or absent.

Cavernous malformations and CS hemangiomas exhibit histological differences. Cavernous sinus hemangiomas often have a capsule or pseudocapsule formed from the dura mater,12,15 the capsule may partially or completely envelop the lesion. Microscopic examination (Fig. 1) of the intervening connective tissue shows no evidence of previous hemorrhage. In contrast, CMs often demonstrate hemosiderin-laden macrophages in various states of thrombosis, which likely reflects the low-flow nature of these lesions. Cavernous sinus hemangiomas, however, can be large and can contain vascular channels that lack histological evidence of thrombosis and calcification, which is consistent with their high-flow state. Orbital hemangiomas may share many of the histopathological characteristics of CS hemangiomas, including a pseudocapsule and the absence of previous hemorrhage.1 However, similarly to CMs, vascular thrombosis has been reported within orbital cavernous hemangiomas.1 Based on both pathological and clinical differences, CS hemangiomas have been classified into two subtypes.21 Subtype A is reported to be associated with severe intra-

TABLE 1

<table>
<thead>
<tr>
<th>Feature</th>
<th>Cavernous Hemangiomas</th>
<th>Intraaxial CMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>CS, sagittal sinus, extradural, orbit</td>
<td>brainstem, cerebral hemispheres, spinal cord</td>
</tr>
<tr>
<td>symptoms</td>
<td>cranial neuropathy, pain, diplopia</td>
<td>incidental, headaches, seizures, acute bleeding</td>
</tr>
<tr>
<td>cause of symptoms</td>
<td>compression</td>
<td>hemorrhage</td>
</tr>
<tr>
<td>neuroimaging findings</td>
<td>occasional bone erosion, calcifications</td>
<td>normal bone, no calcifications</td>
</tr>
<tr>
<td>CT</td>
<td>T1-weighted, isointense; T2-weighted, hyperintense; T1 + Gd, markedly enhances; no venous anomaly</td>
<td>T1 & T2-weighted, heterogeneous signal; T1 + Gd, minimal or no enhancement; often associated w/ DVA</td>
</tr>
<tr>
<td>MRI</td>
<td>well-encapsulated, compact capsule</td>
<td>occult</td>
</tr>
<tr>
<td>DSA</td>
<td>1/3 occult, 2/3 exhibit some degree of blush</td>
<td>nonencapsulated, soft, w/ blood in different stages</td>
</tr>
<tr>
<td>intraop appearance</td>
<td>channels lined w/ single layer of endothelium; no smooth-muscle or elastic fibers</td>
<td>channels lined w/ single layer of endothelium; no smooth-muscle or elastic fibers</td>
</tr>
<tr>
<td>histological appearance</td>
<td>no evidence</td>
<td>different stages of organization</td>
</tr>
<tr>
<td>thrombosis</td>
<td>sensitive</td>
<td>nonsensitive</td>
</tr>
<tr>
<td>response to radiation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* CT = computed tomography; DSA = digital subtraction angiography; DVA = developmental venous anomaly.
operative bleeding. Pathologically, these lesions exhibit thin-walled, sinusoidal, adjacent vessels with scant intervening connective tissue. In contrast, Subtype B CS hemangiomas are more easily removed than Subtype A and are associated with fewer surgical complications. Subtype B lesions have more intervening connective tissue than Subtype A CS hemangiomas. The vessels of Subtype B are less sinusoidal than those of Subtype A, and their size and shape are more variable and irregular.

Treatment Considerations

The orbitozygomatic approach with extradural drilling of the anterior clinoid process has been suggested as the approach of choice for lesions of the CS. It simultaneously offers access to the CS and to the frontal and middle fossae. Despite the massive bleeding associated with CS hemangiomas, their complete resection is possible. Nevertheless, iatrogenic injury to the sixth cranial nerve frequently occurs. Because this cranial nerve is compromised during surgery, extraocular movements fail to improve after resection in many patients. To the best of our knowledge, Shibata and Mori first reported the use of radiation to treat incompletely resected CS hemangiomas as well as its preoperative use to decrease intraoperative blood loss. A significant body of evidence confirms that benign tumors within the CS, including CS hemangiomas, respond well to external-beam radiation. In fact, if massive bleeding is encountered during surgery, the procedure can be interrupted until radiation therapy is delivered. This feature constitutes another major difference from CMs, which fail to shrink in response to radiation and can even respond by swelling.

Treatment with Gamma Knife radiation has been successful, and is associated with a mean reduction of 54% in tumor volume. It has been hypothesized that radiation induces endothelial proliferation and hyalinization of the vessel wall. A mean dose of 14 Gy applied to the 50% isodose line has been reported to be sufficient to decrease tumor volume. The optic pathways should receive no more than 10 Gy. Fractionated external radiation has also been reported to be successful. Theoretically, however, a single high dose of Gamma Knife radiation focused on a
small volume with an acute falloff at the margin may improve occlusion of vascular malformations.25

Current imaging capabilities should enable the differentiation of meningiomas and schwannomas from CS hemangiomas (Fig. 4). The distinction is critical because their treatment algorithm is different. If a CS hemangioma is suspected, an open biopsy procedure is recommended to establish a histological diagnosis. If the suspicion of a CS hemangioma is confirmed, stereotactic radiation is recommended as the definitive treatment.

Appearance on Diagnostic Imaging

A high index of suspicion is necessary to differentiate CS hemangiomas from other tumors such as meningiomas and schwannomas that frequently occur in the CS. Cavernous sinus hemangiomas are usually well-defined, demarcated masses that enhance intensely after administration of contrast material (gadolinium). However, a lack of enhancement has also been reported.24 A constant finding across series is the bright appearance of hemangiomas on T\textsubscript{2}-weighted MR sequences.

Angiographically, one third of the cases are occult, showing no staining.5,26 The remaining two thirds exhibit some degree of “blush” characteristic of tumor feeding vessels, typically from branches of the intracavernous carotid artery, primarily the meningohypophyseal trunk. Nevertheless, branches from the external carotid artery, such as the accessory middle meningeal artery, can also be involved. Preoperative embolization has been described but

![Fig. 4. Axial (A) and coronal (B) MR images obtained after addition of contrast material demonstrating enhancement of the left CS. Axial T\textsubscript{2}-weighted MR image (C) demonstrating a heterogeneous hyperintense signal from the same area. Six years after Gamma Knife radiation with 13 Gy to the 50\% isodose line, an axial MR image (D) obtained after addition of contrast material demonstrates significant reduction in the size of the hemangioma.](image-url)
Cavernous sinus hemangiomas and cavernous malformations

does not appear to decrease intraoperative bleeding.15
On the arterial phase of the angiogram, some authors have reported slow flow reflected as a persistent blush.1
The slow flow is considered to be responsible for the hyperintensity seen on T2-weighted MR images. Unlike meningiomas, a dural tail is seldom visible adjacent to CS hemangiomas.

Blood flow through CMs is usually slow. This stagnant flow may calcify12 and is probably responsible for their occult appearance on angiography. In contrast, CS hemangiomas may exhibit the previously described blush.

Cavernous malformations are associated with blood in different stages of organization. This feature produces their typical “popcorn” appearance. Cavernous sinus hemangiomas, however, do not exhibit blood in the adjacent perivascular connective tissue.

Cavernous malformations are also often associated with a developmental venous anomaly, which does not accompany cavernous hemangiomas.4 Preservation of the venous anomaly is key during the resection of CMs, whereas this issue is not a concern during the resection of CS hemangiomas.

Conclusions

Although CS hemangiomas and CMs within the CNS share similar microscopic and gross pathological features, the two lesions exhibit clear clinical differences.1,12 Poorly defined nomenclature is a major obstacle that has impeded the understanding and appropriate classification of these lesions. Based on the experience of the senior author (R.F.S.), the term “cavernous malformation” should be reserved for lesions that occur within the CNS, and “cavernous hemangioma” should be applied to lesions in extraaxial locations. Appropriate nomenclature should be used to avoid confusion and to improve understanding of these two distinct entities.

References

Address reprint requests to: Robert F. Spetzler, M.D., c/o Neuroscience Publications, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, Arizona 85013. email: neuropub@chw.edu.

Neurosurg. Focus / Volume 21 / July, 2006

5