intraventricular cavernomas are very rare vascular malformations that account for 2.5% of all brain cavernomas. The lateral ventricles are the most common locations for these lesions, followed by the third and fourth ventricles. Within the small group of third ventricle cavernomas, those located at the foramen of Monro are of particular interest because they may present with foraminal obstruction and biventricular hydrocephalus (a dramatic clinical condition), and must be differentiated from other lesions originating in that region.

We report a clinical case in which this diagnostic dilemma is well exemplified: because the results of neuroimaging were consistent with the presence of a colloid cyst, a neuroendoscopic approach was selected for its treatment. Under direct endoscopic view of the ventricular lesion, however, the diagnosis of cavernoma was made and a definitive microsurgical treatment of the vascular malformation was ultimately performed.

Case Report

History. This 35-year-old man was admitted to our neurosurgical unit with a 6-month history of recurrent, short episodes of postural headache that were precipitated by head position changes. During the week before hospital admission his symptoms became exacerbated, culminating in a severe headache with cervical, radiating pain and vomiting the day before he was admitted.

Examination and Neuroimaging. Clinical examination showed only a mild papilledema with no neurological deficit. Blood tests revealed a coagulation factor V deficiency. Initial CT scans demonstrated a 12-mm hyperdense lesion within the third ventricle that was partially occupying the right foramen of Monro and causing biventricular asymmetrical hydrocephalus. Admission MR images demonstrated an iso- to hypointense lesion with mild and nonhomogeneous contrast enhancement on T_1-weighted images (Fig. 1) and a hyperintense lesion on proton density–weighted images. A cerebral angiographic study revealed no pathological vascularization. Based on its clinical presentation and imaging appearance, the lesion was diagnosed as a colloid cyst, and an endoscopic approach was selected for its treatment.

Operation. Access was precoronal, through a 12-mm bur hole made 2 cm lateral from the midline. A flexible endoscope with a 3.9-mm diameter was used. After introduction of a peel-away cannula, some xanthochromic CSF spilled out. At first, visibility inside the lateral ventricle was limited and copious washing was necessary to clear the yellow CSF. The foramen of Monro was completely occupied by a blackberry-like formation (Fig. 2) that was recorded as a cavernoma, with its turgid venous capillaries pushing the choroid plexus backward. The lesion apparently originated from the wall of the pars libera of the columna fimbria, which was white in the anterior part (as in healthy individuals), but brown toward the posterior border (Fig. 2A).

The procedure was abandoned after we had performed a septostomy to resolve the asymmetrical hydrocephalus, and temporary CSF drainage was assured with an intra-
Cavernous angiomas primarily involving the third ventricle can be divided into four subgroups in relation to the region from which they originate. Early symptoms of cavernomas involving the suprachiasmatic region may be visual field restriction and endocrine dysfunction, whereas masses involving the lateral wall or floor of the third ventricle can affect short-term memory. In contrast, hydrocephalus (with sudden signs of raised intracranial pressure) is a common presentation for lesions located in the region of the foramen of Monro. Growth patterns and clinical manifestations of cavernous angiomas may be influenced by the fact that they are intraventricular: when these lesions develop within the ventricles, rapid growth is observed, resulting in giant malformations. Such behavior may be explained by the low mechanical resistance offered by CSF to the expanding cavernoma, or alternatively by the frequent occurrence of intrallesional bleeding when cavernomas arise within cerebral ventricles. Our case differed from the aforementioned tendency of third ventricle cavernomas to present as giant lesions.

The data published on this subject are scarce, and are mainly limited to case reports (Table 1). The first report of a cavernoma documented with a CT scan in the foramen of Monro was by Britt, et al., who described a lesion simulating a colloid cyst. A second case, reported by Pozzati, et al., shared some similarities with ours; a 31-year-old man presented with a 3-month history of headache, and CT scans revealed an asymmetrical dilation of the lateral ventricle and a large lesion in the foramen of Monro. Harbaugh, et al., reported on a patient who presented with an ictal onset and minimal intraventricular hemorrhage. The lesion was surgically removed via a transcallosal approach, and it was identified as hemangioma calcificans. Macroscopically it appeared as a well-demarcated, multilobulated, purple-red mass positioned at the level of the foramen of Monro. Suess, et al., described one case in which an unsuspected large lesion presented with progressive hydrocephalus and signs of increased intracranial pressure, including headache, nausea and vomiting, short-term memory deficits, and psychic changes. An analogous
clinical presentation was detailed in the case described by Crivelli, et al., in which a small lesion was identified on neuroimaging that could easily have indicated a possible cavernoma because of an associated venous angioma.

Characteristically, cavernomas are hyperdense on CT scanning, whereas on MR imaging they may appear hyper- to isointense on T1-weighted, and mixed (with rings of low intensity) on T2-weighted images. Some authors have pointed out that third ventricle cavernomas may have a unique appearance on MR imaging when compared with cavernomas located elsewhere.

Proton-density MR imaging acquisition excluded signs of bleeding in our case, despite endoscopic evidence of previous blood leakage (xanthochromic CSF and brown discoloration of the foramina). Considering both clinical history and neuroimaging appearance, our patient’s lesion resembles a colloid cyst more than a cavernoma, although a careful review of MR images revealed a honeycomb-like appearance, which retrospectively might have cast some doubt on the diagnosis of colloid cyst. A T2-weighted image, which was not available in this case, probably could have led us to the right diagnosis.

Misdiagnosis of lesions involving the third ventricle is not that rare. Britt, et al., reported a third ventricle choroid plexus arteriovenous malformation simulating a colloid cyst and producing similar symptoms. Other masses such as meningiomas, plexus papillomas, ependymomas, and germinomas have also been described as possibly simulating a colloid cyst. Further, there are reports of hemorrhagic colloid cysts, a condition that makes the preoperative differential diagnosis even trickier. In any case, although MR imaging can provide the initial diagnosis for such an unusually localized malformation, it should be confirmed histopathologically.

Given this peculiar and ambiguous presentation, the endoscopic approach initially attempted in our patient (albeit not appropriate for a radical removal) was possibly the least invasive and a more definitive way to reach the correct diagnosis. To our knowledge, this is the first time a cavernoma of the foramen of Monro has been endoscopically viewed; previous reports of endoscopic approaches to intraventricular cavernomas involved a hypothalamic lesion and a cavernoma of the lateral ventricle. Endoscopic removal was attempted in one patient only, but that one experienced relevant cognitive sequelae. The dense vascularization of the periventricular areas in which the malformation is rooted, and the intimate relationship that the lesion itself has with the normal vascular bed explain why only a microsurgical approach may ensure sufficient precision and care during the excision procedure.

Conclusions

This case of an intraventricular cavernoma of the foramen of Monro, with its clinical and imaging presentation, underlines the diagnostic difficulties posed by these lesions. The combined use of neuroendoscopy and microsurgery resulted in a correct diagnosis, an unprecedented endoscopic view of this type of lesion, and possibly in the best treatment for the patient.

References

7. Katayama Y, Tsubokawa T, Maeda T, Yamamoto T: Surgical
management of cavernous malformations of the third ventricle.

J Neurosurg 80:64–72, 1994

8. Longatti P, Martinuzzi A, Moro M, Fiorindi A, Carteri A:
 Endoscopic treatment of colloid cysts of the third ventricle: 9
 consecutive cases. Minim Invasive Neurosurg 43:118–123,
 2000

 patterns of cavernous angioma in the fourth ventricle. Case

10. Ogawa A, Katakura R, Yoshimoto T: Third ventricle cavernous

11. Pozzati E, Gaist G, Popp M, Morrone B, Padovani R: Micro-
 surgical removal of paraventricular cavernous angiomas. Re-

12. Reyns N, Assaker R, Louis E, Lejeune JP: Intraventricular cav-
 ernomas: three cases and review of the literature. Neurosurgery
 44:648–655, 1999

 93:369–370, 2000

 Cavernous malformations of the third ventricle. Neurosurgery
 37:37–42, 1995

15. Suess O, Hammersen S, Brock M: Intraventricular cavernoma:
 unusual occurrence in the region of the foramen of Monro. Br
 J Neurosurg 16:78–79, 2002

 1991

17. Veto F, Horvath Z, Doczi T: Biportal endoscopic management
 of third ventricle tumors in patients with occlusive hydro-

Manuscript received April 14, 2006.
Accepted in final form May 30, 2006.
Address reprint requests to: Alessandro Fiorindi, M.D, Divisione
Clinicizzata di Neurochirurgia, Ospedale Regionale Ca’ Foncello,
31100 Treviso, Italy. email: afiorindi@ulss.it