There is nothing more difficult, more dangerous nor more least likely to succeed than to initiate a new order of things.

Niccolo Machiavelli (1469–1527)

PIONEERS AND PRINCIPLES

The roots of brain and skull base surgery extend deeply into the nineteenth century. Bold and creative physicians in every decade who challenged existing practices “to initiate a new order of things” often came under intense criticism and were even ostracized by their peers. The modern era of surgery required the discovery of anesthesia, antisepsis, and cortical localization, all of which initially were controversial; not unlike innovations at the present time.

By 1831 all three basic anesthetic agents (ether, nitrous oxide gas, and chloroform) had been discovered, but medical applications for their pain-relieving properties were simply overlooked. A Connecticut dentist, Horace Wells, was booed and hissed from John C. Warren’s medical class at Harvard when for some inexplicable reason his patient cried out in pain during an extraction while under the “influence” of nitrous oxide. Subsequently another dentist, William T. G. Morton, importuned Dr. Warren to use ether to remove a submaxillary vascular tumor in 1846. Although the surgery was successful, it still took several years before anesthesia was routinely used for leisurely operating without speed being the sine qua non of a good surgeon.

After watching many of his patients die of puerperal fever, Semmelweis (1818–1865) discovered that simple handwashing before and after each delivery markedly reduced this scourge of the birthing room. When he reported his results to the medical society of Vienna, he and his paper were greeted with virulent attacks. Ten years after his original discoveries, the profession hardly took notice and scientists as prestigious as Virchow still opposed his ideas. He ultimately was broken by the indifference and callousness of his superiors and colleagues and was committed to an asylum where he died in 1865.

Finally, two Germans, Fritsch (1838–1927) and Hitzig (1838–1907) boldly exposed the brain of a dog on Fra Hitzig’s drawing room table and used an electrical current to stimulate the exposed brain. They were roundly criticized for their experimentation despite the fact that their observations subsequently led to the modern era of brain localization.

Thus, with the discoveries of anesthesia, antisepsis, and cerebral localization the stage was finally set for the evolution of brain and skull base surgery. The earliest approaches to brain surgery were at the skull base. Francesco Durante (1845–1934) was the first to remove an olfactory groove meningioma from the skull base in a 35-year-old woman who presented with proptosis, loss of smell, and memory impairment. He induced chloroform anesthesia and applied antiseptic techniques together with cerebral localization, with a successful outcome documented 10 years later. In 1879 William Macewen (1849–1924) similarly successfully removed a brain tumor over the right eye in a 14-year-old patient by using a meticulous technique and what he referred to as antiseptic trephining. He introduced endotracheal intubation in place of tracheostomy in 1880 and modified the Lister technique by spraying carbolic acid over the wound.

Subsequent innovations in skull base surgery came relatively rapidly. Sir Victor Horsley (1857–1916) sectioned the posterior root of the trigeminal nerve for pain relief, Sir Charles Ballance (1856–1936) reported one of the earliest cases of acoustic tumor removal, and pioneers such as Fedor Krause (1857–1937) from Germany, Thierry de Martel (1875–1940) from France, and others made major contributions to posterior fossa and skull base surgery.

SKULL BASE SURGERY

Transsphenoidal Approach

In 1907 Schloffer (1868–1937) was the first to report successful removal of a pituitary tumor via a transnasal, transsphenoidal approach. His incision was external, along the left nasal labial fold, and the patient’s nose was

Abbreviation used in this paper: CSF = cerebrospinal fluid.
flapped to one side causing significant facial scarring. It was Oskar Hirsch (1877–1965), a Viennese otorhinolaryngologist, who in 1910 first described the endonasal, transseptal, transsphenoidal approach in which local anesthesia was used.17 Although Cushing did his first pituitary transphenoidal operation in 1909 in a patient with acromegaly, he used Schloffer’s technique.9 He subsequently modified his operation to use Hirsch’s endonasal and then subsequently his own sublabial incision with induction of general anesthesia instead of local infiltration with cocaine, and he used a head lamp for enhanced vision. He used this approach to perform operations in 231 patients with pituitary tumors, with a mortality rate of only 5.6% between the years 1910 and 1925. Because of the complications of CSF rhinorrhea, difficulty in controlling hemorrhage, and postoperative cerebral edema, he abandoned this approach and returned to the transeptal operation for pituitary tumors.

In 1923 Norman Dott (1897–1973), one of the founding fathers of neurosurgery in Great Britain, journeyed to Boston as a traveling fellow to study under Cushing.10 He was impressed with the sublabial transsphenoidal approach to the pituitary and subsequently brought the technique back to Edinburgh. By 1956 he had no deaths in 80 consecutive transsphenoidal procedures.

In 1956 Girard Guiot (1912–1998) visited Dott, observed his meticulous technique and outcomes, and returned to Paris to reintroduce the endonasal approach to skeptical colleagues.15 Guiot introduced intraoperative radiofluoroscopy for improved localization and applied the transsphenoidal approach to craniopharyngiomas, clival chordomas, and parasellar lesions.

Another traveling fellow, Jules Hardy from Montreal, learned and closely evaluated the techniques of Guiot and then in 1967 first used the operating microscope in transsphenoidal surgery and designed his own set of microsurgical instruments.16 This occurred at the same time that a Turkish neurosurgeon from Zürich, Switzerland journeyed to Burlington, Vermont to learn microsurgical techniques in the laboratory of R. M. Peardon Donaghy. This neurosurgeon, Gazi Yaşargil, would subsequently be acclaimed the neurosurgeon of the century for his spectacular contributions to intracranial and skull base surgery.

With the incredible advances in intraoperative visualization offered by the operating microscope and localization with neuroimaging, innovative surgical approaches to the skull base proliferated. For the anterior fossa, the frontal, subfrontal–subcranial, transmaxillary–midface degloving, transfacial, and craniofacial approaches were either introduced or improved on. For the middle cranial fossa, the subtentorial, pterional, and orbitozygomatic approaches were introduced. For the posterior cranial fossa, the translabyrinthine, retrosigmoid, suboccipital, and extreme lateral approaches are used routinely. For the central skull base, the transoropalatal, transmaxillary, transfacial, and the transseptal–transsphenoidal approaches are now common. Dolenc, Fukushima, Samii, Sekhar, Al-Mefty, Jane Sr., Sen, and many more have made major contributions in this field.

Extended Transsphenoidal Approach

Several authors have modified and added to the extended transsphenoidal approach pioneered by Guiot and Har-
pioneers in this new field. Patient selection, operative pro-
cedures, techniques for obtaining hemostasis, skull base
repair, and specific nuances in tumor removal are all
detailed.

As a student of the transsphenoidal approach for many
years I have had the opportunity to observe the skull base
operations performed by such giants as Guiot, Hardy, Ya-
şargil, Wilson, Laws, and others. For the last 5 years I have
observed and to a limited extent participated in the ev-
olution of the expanded endonasal approach to lesions of
the skull base.

Although it remains a work in progress, it is my opinion
that the endoscopic approach represents a paradigm shift
perhaps equivalent to the introduction of the microscope in
approaching various skull base lesions. There remains
much to be done in acquiring the skills, developing addi-
tional instrumentation, and improving on skull base repair,
thus reducing CSF leaks and continuing to define optimal
patient selection. The principles set forth in this volume of
Neurosurgical Focus, however, underpin what I believe to
be a firm foundation for this emerging field.

Clearly, detractors whose skepticism is understandable
will remain, but the general principle we have seen in all of
medicine pertains to any new idea or approach. Initially
there is active resistance from peers, and after several years
or longer and many presentations and papers, passive resis-
tance develops. As others besides the innovators acquire
the skill set, passive acceptance occurs, and finally active
acceptance evolves as “we’ve always done it that way”
becomes the norm. I believe that in the year 2005 we are in
the passive resistance/passive acceptance stage preparatory
to evolving into the active acceptance realm of this new
field of collaborative endoscopic endonasal skull base
surgery, which will indeed initiate a new order of things
despite the danger and difficult nature of the innovation.

References

transsphenoidal approach to the sella: towards functional endo-
coscopic pituitary surgery (FEPS). Minim Invasive Neurosurg
41:66–73, 1998

doscopic endonasal transsphenoidal surgery. Neurosurgery 45:
392–396, 1999

3. Cappabianca P, Frank E, Pasquini E, et al: Extended endoscop-
ic endonasal transsphenoidal approaches to the suprasellar re-
region, planum sphenoidale and clivus, in de Divitiis E, Capp-
bianca P (eds): Endoscopic Endonasal Transsphenoidal

4. Carrau RL, Jho HD, Ko Y: Transnasal-transsphenoidal endo-
coscopic surgery of the pituitary gland. Laryngoscope 106:
914–918, 1996

5. Carrau RL, Snyderman CH, Kassam AB: Endoscopic manage-
ment of lesions of the median and middle skull base. Skull
Base 11 (Suppl 1):6, 2001 (Abstract)

scopic repair for CSF leak of the Sphenoid sinus. Skull Base 11
(Suppl 1):6, 2001 (Abstract)

7. Caldwell WT, Weiss MH: The transnasal transsphenoidal ap-
Baltimore: Williams & Wilkins, 1998, pp 553–574

8. Cushing H: Partial hypophysectomy for acromegaly. With re-
marks on the function of the hypophysis. Ann Surg 50:
1002–1017, 1909

9. de Divitiis E, Cappabianca P, Cavalllo LM: Endoscopic trans-
sphenoidal approach: adaptability of the procedure to different

10. Dott NM, Bailey P: A consideration of the hypophyseal adeno-

11. Duvvuri U, Snyderman CH, Kassam AB: Trans-sphenoidal ap-
proach to petrous apex lesions: a case series. Skull Base 14
(Suppl 1):23–24, 2004 (Abstract)


Nerv Sys 16:669–685, 2000

14. Griffith HB, Veerapen R: A direct transnasal approach to the

15. Guiot G, Thibault B: L’extirpation des adénomes hypophysaires

16. Hardy J: [Surgery of the pituitary gland, using the transsple-
noidal approach. Comparative study of 2 technical methods.]
Union Med Canad 96:702–712, 1967 (Fr)

lesions. With a report of two successful cases. JAMA 55:
772–774, 1910

transstuberculum sellae approach for suprasellar meningiomas.
Semin Neurosurg 14:211–218, 2003

stereotaxy for transsphenoidal surgery. Neurosurgery 48:
1302–1308, 2001

20. Jho HD, Carrau RL: Endoscopic endonasal transsphenoidal sur-

21. Jho HD, Carrau RL, Ko Y: Endoscopic pituitary surgery, in Re-
ganchary SS, Wilkins RH (eds): Neurosurgical Operative At-
tas. Park Ridge, IL: American Association of Neurological Sur-
geons, 1996, pp1–12


23. Jho JD, Carrau RL, McLaughlin ML, et al: Endoscopic trans-
sphenoidal resection of a large chordoma in the posterior fossa.

1-the midline anterior fossa skull base. Minim Invasive Neu-
surgery 47:1–8, 2004

donosal resection of parasellar craniohypophysealgiomas: an early
experience and review of the literature. Skull Base 14 (Suppl
1):21, 2004 (Abstract)

26. Kassam A, Pless M: Endoscopic endonasal transplanum ap-
proach to Chiasmatic lesions: a new paradigm in the surgical
management of tumors compressing the optic chiasm, in North
American Neuro-Ophthalmology Society, February 8–13,
2003, West Hartford, CT: NANS, 2003, p 140

27. Kassam A, Snyderman C, Carrau R: Expanded endonasal ap-
proach: an evolving paradigm to the ventral skull base. Skull

28. Kassam A, Snyderman C, Carrau R: Expanded endonasal ap-
proach: transcobinform approach. Skull Base 14 (Suppl 1):10,
2004 (Abstract)

29. Kassam A, Snyderman C, Carrau R: Expanded endonasal ap-
proach: transplanum approach. Skull Base 14 (Suppl 1):10,
2004 (Abstract)

30. Keen WW, Spiller WG: On resection of the gasserian ganglion
with a pathological report on seven ganglia. Am J Med Sci
116:503–518, 1898


32. Kim J, Choe I, Bak K, et al: Transsphenoidal supradiaphrag-
matic intradural approach: technique note. Minim Invasive Neu-
surgery 43:33–37, 2000

33. Kitano M, Taneda M: Extended transphenoidal approach with

Neurosurg. Focus / Volume 19 / July, 2005

3

Unauthenticated | Downloaded 06/23/22 02:06 AM UTC
45. Semmelweis IF: Die Aetiologie der Bergriff und die Prophylaxis des Kindbettfiebers. Hartlebens Verlags-Expedition, Pest Vienna Leipzig, 1861 (Reference unverified)