Stent-assisted coil placement for unruptured cerebral aneurysms

PASCAL JABBOUR, M.D., CHRISTOPHER KOEBBE, M.D., EROL VEZNEVAROGLU, M.D., RONALD P. BENITEZ, M.D., AND ROBERT ROSENWASSER, M.D.

Department of Neurosurgery, Thomas Jefferson University School of Medicine, Jefferson Hospital for Neuroscience, Philadelphia, Pennsylvania

Object. The treatment of wide-necked cerebral aneurysms represents a challenging problem for neurosurgeons. The recent development of stents has provided clinicians with the ability to treat these aneurysms while keeping the parent vessel patent. The long-term occlusion rate of aneurysms treated with stent-assisted coil placement has yet to be investigated. The authors report the use of a new intracranial stent—the Neuroform microstent—in the treatment of unruptured wide-necked cerebral aneurysms.

Methods. Thirty-two patients harboring unruptured wide-necked intracranial aneurysms underwent a stent-assisted coil placement procedure. Patients were pretreated with antiplatelet agents, and a stent was positioned across the neck of the aneurysm. The next step was the insertion of coils into the aneurysm cavity. Patients received anticoagulation therapy for 24 hours after the procedure.

All 32 patients with unruptured wide-necked cerebral aneurysms were suitable candidates for this procedure. Occlusion of at least 90% of the aneurysm was achieved in 24 patients (75%) and 0% occlusion was observed in five patients (15%). Two patients experienced thromboembolic events, one of which was directly related to the stent. The overall complication rate was 6.3%.

Conclusions. Intracranial stents will be used more frequently in the new era of endovascular management of wide-necked cerebral aneurysms. With some technical improvements and more data on long-term occlusion rates, this new modality should improve the occlusion of wide-necked cerebral aneurysms while protecting the parent vessel.

KEY WORDS • unruptured aneurysm • intracranial stent • coil occlusion
increasing the activated clotting time to twice the baseline. All stents were placed through a No. 6 French guide catheter (Envoy; Cordis Endovascular, Miami Lakes, FL) after cerebral angiography was performed with the aid of a calibrated fiducial marker to render vessel and aneurysm measurements. Stents are sized based on the largest diameter of the parent vessel in which the device is to be placed. A stent should be slightly oversized rather than undersized. The stent exerts an outward radial force, which allows it to lie against the vessel walls. Despite this radial force, we have seen no significant change in the diameter of the vessel containing the device. The stent will open to match the diameter of the vessel and will change from smaller to larger diameters with no apparent change in vessel caliber.

The Neuroform stent (Boston Scientific, Natick, MA) is intended to be positioned over a microguidewire with the use of a No. 2 French stabilizer. To perform this technique, a microguidewire (Transcend 300 cm; Boston Scientific) is navigated through a microcatheter beyond the aneurysm and into a distal vessel. The microcatheter is then exchanged for the stent No. 3 French microcatheter and No. 2 French stabilizer catheter. With the stent in position, the stabilizer catheter is used to hold the device in place while it is unsheathed in the microcatheter. The microcatheter placement can then be used to access the aneurysm. In our early experience, we have found this system difficult to use. There is a large amount of friction within the system, which results in tremendous difficulty in advancing the coaxial system. Because of this difficulty, we have modified the documented stent placement procedure.

In our modification, the No. 3 French stent microcatheter can be navigated with the use of a 200-cm microguidewire to the aneurysm or exchanged with a microguidewire. Once the stent is positioned at the aneurysm site, the microguidewire is removed. At this point, a microguidewire cannot be reintroduced through the stent while the microcatheter remains in the body. With the aid of a digital road map, a coil pusher (Boston Scientific/Cordis Endovascular) is navigated through the No. 3 French microcatheter up to the distal stent marker. Then, with the simultaneous use of biplane fluoroscopy and a digital road map, the stent is advanced through the microcatheter until the proximal stent marker reaches the distal marker of the No. 3 French microcatheter. With the stent positioned so that the distal portion is placed in a desirable location, the coil pusher is used to push the stent out of the No. 3 French microcatheter. Once the distal end of the stent is positioned and lies against the vessel wall, the coil pusher can act like the No. 2 French stabilizer to hold the proximal portion of the device in place while the stent is unsheathed from the No. 3 French microcatheter. Ideally, the stent should be positioned so that its proximal end is located on the most horizontal segment of the artery. Placing the stent on or near a curve increases the difficulty of navigating a microcatheter into the device and subsequently into the aneurysm. With this technique, the No. 2 French stabilizer catheter is not used. The use of a coil pusher effectively eliminates any problems with catheter friction. Recently, however, stent placement was not possible in several cases.

Endovascular Occlusion

Once the microcatheter is connected to allow continu-ouous fluid flush, it can be navigated over a microguidewire to the proximal end of the stent. With simultaneous biplane road mapping, the microcatheter and microguidewire can then be navigated into the proximal end of the stent. Once the microguidewire is positioned in the stent, the microcatheter can be advanced into the device. The aneurysm can then be catheterized with the microguidewire and the catheter. Coil placement in the aneurysm can then be performed in the standard way.

Postoperative Management

All patients were transferred to the neurosurgical intensive care unit after the procedure, and they all received intravenously administered heparin for 24 hours with a target partial thromboplastin time of 60 to 70 seconds. Once heparin was stopped, dextran 40 was administered for the next 24 hours. The femoral sheath was removed 24 hours after the procedure was completed. Clopidogrel was discontinued at 6 weeks and aspirin therapy was maintained indefinitely.

RESULTS

We achieved 100% occlusion in 18 cases, 99% in three, greater than 90% in three, less than 90% in three, and there was technical failure in five cases. In the majority of the patients (21) an acute occlusion rate of 99 to 100% was observed (Table 1).

Two patients experienced thromboembolic events; one of them had undergone stent-assisted coil occlusion of a basilar apex aneurysm through a dominant vertebral artery. Postoperatively the patient was hemiparetic and magnetic resonance imaging demonstrated changes at the middle cerebellar peduncle and brainstem. This event was thought to be secondary to a basilar perforating vessel occlusion during placement of the guide catheter. At the 6-week follow-up visit she had only mild residual hemiparesis. Another patient with a large PCoA aneurysm and fetal posterior cerebral circulation experienced a delayed transient ischemic attack after prematurely discontinuing clopidogrel at home. The patient was readmitted 10 days after initial discharge with new onset of right-sided numbness and a right visual field cut. Her deficits resolved 48 hours after starting therapy with heparin and clopidogrel. The patient was discharged with instructions to maintain Coumadin therapy for 3 months, and clopidogrel and aspirin therapy were continued. There were no instances of acute parent-vessel injury or delayed stenosis secondary to stent placement. Further angiographic follow-up review is obviously needed.

ILLUSTRATIVE CASE

Click here to view the video clip using RealOne Player or Windows Media Player. The clip shows the procedure for stent-assisted coil placement in a paraclinoid aneurysm.

DISCUSSION

The use of stents in intracranial vascular lesions has prompted the development of complex management strategies for treating aneurysms. The early success of stent placement for abdominal aortic aneurysms and other
Stent-assisted coil placement for unruptured cerebral aneurysms

TABLE 1
Demographic data in 32 patients who underwent stent-assisted occlusion of aneurysms*

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age (yrs)</th>
<th>Aneurysm Location</th>
<th>Procedure</th>
<th>Occlusion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57</td>
<td>BA</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>lt COpHA</td>
<td>coil/stent</td>
<td>99</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>rt COpHA</td>
<td>stent only</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>rt COpHA</td>
<td>stent only</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
<td>lt COpHA</td>
<td>stent only</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>rt PICA</td>
<td>coil/stent</td>
<td>99</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>rt paracanoid</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>49</td>
<td>rt COpHA</td>
<td>coil/stent</td>
<td><90</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>rt COpHA</td>
<td>coil/stent</td>
<td>>90</td>
</tr>
<tr>
<td>10</td>
<td>34</td>
<td>rt COpHA</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>42</td>
<td>BA</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>44</td>
<td>lt ICA bif</td>
<td>coil/stent</td>
<td>99</td>
</tr>
<tr>
<td>13</td>
<td>62</td>
<td>BA</td>
<td>coil/stent</td>
<td>>90</td>
</tr>
<tr>
<td>14</td>
<td>54</td>
<td>rt SCA</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>66</td>
<td>rt paracanoid</td>
<td>coil/stent</td>
<td><90</td>
</tr>
<tr>
<td>16</td>
<td>53</td>
<td>rt paracanoid</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>71</td>
<td>rt PCoA</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>39</td>
<td>midbasilar</td>
<td>coil/stent</td>
<td>>90</td>
</tr>
<tr>
<td>19</td>
<td>48</td>
<td>BA</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>59</td>
<td>lt PCoA</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>21</td>
<td>70</td>
<td>lt PCoA</td>
<td>coil/stent</td>
<td><90</td>
</tr>
<tr>
<td>22</td>
<td>45</td>
<td>BA</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>23</td>
<td>59</td>
<td>lt paracanoid</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>24</td>
<td>56</td>
<td>rt ICA bif</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>25</td>
<td>61</td>
<td>BA</td>
<td>stent only</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>42</td>
<td>rt paracanoid</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>27</td>
<td>49</td>
<td>rt paracanoid</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>28</td>
<td>61</td>
<td>rt paracanoid</td>
<td>stent only</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>42</td>
<td>rt CCF</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>30</td>
<td>39</td>
<td>rt paracanoid</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>31</td>
<td>45</td>
<td>rt paracanoid</td>
<td>coil/stent</td>
<td>100</td>
</tr>
<tr>
<td>32</td>
<td>64</td>
<td>lt cavernous</td>
<td>coil/stent</td>
<td>100</td>
</tr>
</tbody>
</table>

* Bif = bifurcation; CCF = carotid cavernous fistula; COpHA = carotid opthalmic artery; PICA = posterior inferior cerebellar artery; SCA = superior cerebellar artery.

Peripheral lesions like traumatic extracranial carotid artery dissections and pseudoaneurysms has been a valuable contribution to the development of intracranial stent delivery techniques.4,14,16,27,32,35,37 There are still some difficulties and complications ranging from technical pitfalls to thromboembolic events that are encountered with the use of intracranial stents.1

Stent Placement

The most significant difficulty encountered to date has been with stent placement into the parent vessel. We have modified the initial delivery system as previously described in Clinical Material and Methods. Despite this modification, we have encountered some difficulties with stent delivery in six cases. In all of them we were unable to initiate movement of the stent in the No. 3 French microcatheter. It may be advisable to break the stent on the table before placing the catheter in the body. This can be achieved by advancing the stabilizer into the No. 3 French catheter and moving the stent to break the initial friction. Care must be taken to avoid stretching and rupture of the lesion by the catheter when delivering the stent and moving it within the microcatheter. The stent should adequately bridge the neck of the aneurysm. In several cases we noted parent-vessel vasospasm that resolved without treatment, and after we changed the method of stent delivery we have not encountered this problem.

Aneurysm Catheterization

The problem encountered during this phase was stent movement or difficulty in gaining access to the proximal end of the device, which led us to abort the aneurysm catheterization in four cases. One modification of the technique involves placing the catheter tip within the aneurysm, followed by stent placement. This ensures the ability to place coils within the aneurysm but may increase the risk associated with the procedure if the catheter is prevented from backing out of the lesion.

Coil Placement

The presence of the stent did not affect our ability to deliver the coils. The size of the opening between stent interstices is the same as the No. 2 French catheter. When the stent is placed in a tortuous vessel segment, these cells may be stretched to a larger diameter, thus increasing the risk of coil prolapse. The use of a balloon can be beneficial in keeping the last few coils in place when this occurs.

Thromboembolic Complications

In our series one patient experienced a thromboembolic event related to stent placement. Premedication with antiplatelet agents is necessary before any stent-assisted procedures are performed. Patients should receive loading doses of aspirin and clopidogrel for at least 3 days. The use of a heparin drip during and for 24 hours after the procedure is crucial to prevent thromboembolic complications. Patients receive a 6-week course of clopidogrel on discharge, and aspirin therapy is continued indefinitely.

CONCLUSIONS

The impact of stents on the long-term occlusion rate of aneurysms has yet to be investigated. Stent-assisted coil delivery is a useful technical adjunct for treatment of wide-necked aneurysms. Although technical improvements of this device are needed, primarily with regard to the delivery system, further studies are necessary to investigate the long-term results. Longer follow-up review is needed for these patients and should focus on delayed thromboembolic events, delayed parent-vessel stenosis, and long-term occlusion rates. We think that this device represents a significant milestone in the endovascular treatment of challenging intracranial aneurysms.

Disclosure

Robert H. Rosenwasser, M.D., is a consultant to Boston Scientific Corporation.

References

P. Jabbour, C. Koebbe, and R. Rosenwasser

Manuscript received September 15, 2004.
Accepted in final form October 11, 2004
Address reprint requests to: Pascal Jabbour, M.D., 909 Walnut Street, 3rd Floor, Philadelphia, Pennsylvania 19107. email: Pascal.jabbour@mail.tju.edu.