Contemporary management of prolactinomas

JAMES K. LIU, M.D., AND WILLIAM T. COULDWELL, M.D., PH.D.

Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah

Prolactin-secreting pituitary adenomas—prolactinomas—are the most common type of functional pituitary tumor. Treatment of hyperprolactinemia is indicated because of the consequences of infertility, gonadal dysfunction, and osteoporosis. Making the correct diagnosis is important because the first line of therapy is medical management with dopamine agonists. Medical therapy is effective in normalizing prolactin levels in more than 90% of patients, but long-term treatment may be required in some patients. Transsphenoidal surgery is usually indicated in those patients in whom medical therapy fails or cannot be tolerated, or in patients who harbor microprolactinomas. In experienced hands, a hormonal and oncological cure can be achieved in more than 90% of patients after transsphenoidal removal of microprolactinomas with minimal risks. Thus, surgery may be an option for microprolactinomas in a young patient who desires restoration of fertility and avoidance of long-term medical therapy. The authors review the diagnosis and management of prolactinomas, including medical therapy, surgical therapy, and stereotactic radiosurgery.

KEY WORDS • prolactinoma • pituitary tumor • transsphenoidal approach • bromocriptine • cabergoline

Abbreviation used in this paper: MR = magnetic resonance.
TABLE 1
Clinical manifestations of prolactinomas

<table>
<thead>
<tr>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyperprolactinemia</td>
</tr>
<tr>
<td>amenorrhea (female patients)</td>
</tr>
<tr>
<td>galactorrhea (female patients)</td>
</tr>
<tr>
<td>infertility</td>
</tr>
<tr>
<td>decreased libido</td>
</tr>
<tr>
<td>impotence (male patients)</td>
</tr>
<tr>
<td>osteoporosis</td>
</tr>
<tr>
<td>delayed puberty (adolescents)</td>
</tr>
<tr>
<td>mass effect</td>
</tr>
<tr>
<td>headaches</td>
</tr>
<tr>
<td>visual acuity & field impairment</td>
</tr>
<tr>
<td>cranial nerve palsies</td>
</tr>
<tr>
<td>hypothalamic impairment</td>
</tr>
<tr>
<td>hydrocephalus</td>
</tr>
<tr>
<td>hypopituitarism</td>
</tr>
<tr>
<td>pituitary apoplexy</td>
</tr>
</tbody>
</table>

Women commonly present with galactorrhea, amenorrhea, and infertility. Approximately 5% of women with primary amenorrhea and 25% of women with secondary amenorrhea (excluding pregnancy) have a prolactinoma. When galactorrhea accompanies amenorrhea in women, the incidence of a prolactinoma increases to 70 to 80%. Galactorrhea is present in 50 to 80% of women with hyperprolactinemia. Although prolactinomas are found to be distributed equally between men and women at autopsy, women are four times more likely to become symptomatic than men. Women generally present earlier in the course of the disease and with smaller tumors (mostly microprolactinomas) at the time of diagnosis. In contrast, men commonly present with larger tumors (mostly macroprolactinomas), which cause local mass effect, and symptoms of visual loss, cranial nerve dysfunction, and/or hypopituitarism. Galactorrhea is extremely rare in men and the hypogonadal manifestations of decreased libido and impotence are often not recognized as a sign of hyperprolactinemia. Approximately 2% of all men with impotence have a prolactinoma. Because most men attribute their sexual dysfunction to the aging process or to functional causes, the presence of a prolactinoma is often not evident until the tumor becomes large and produces local mass effect.

Untreated hyperprolactinemia can also lead to premature osteoporosis in both sexes due to impairment of gonadal function leading to a relative estrogen or testosterone deficiency. These important, but often overlooked effects of hyperprolactinemia are additional arguments for treating patients who may not be concerned about sexual dysfunction. The osteopenia is progressive and correlates with the duration of hypogonadism. Although normalization of prolactin levels halts bone loss, bone density increases to an extent, but does not return to normal baseline values.

Symptoms from mass effect arise from tumor compression on neighboring structures. Suprasellar extension may cause compression on the optic apparatus, which leads to visual deficits. Less commonly, lateral extension into the cavernous sinus can cause cranial nerve palsies. Compression of the normal pituitary gland can result in hypopituitarism. Extensive macroadenomas can obstruct the flow of cerebrospinal fluid, resulting in hydrocephalus.

An apoplectic hemorrhage and/or infarction into a prolactinoma (pituitary apoplexy) can cause rapid enlargement of the tumor, resulting in hypopituitarism and acute compression of the sellar and parasellar structures. Clinical signs and symptoms include sudden onset of headache, nausea, vomiting, diplopia, and visual impairment. Headache, the most common symptom, is often described as excruciating and sudden in onset and is frequently associated with nausea and vomiting. When these symptoms are accompanied by meningeal irritation, neck stiffness, and photophobia from a hemorrhage breaking into the subarachnoid space, the clinical picture may mimic an aneurysmal subarachnoid hemorrhage. Pituitary apoplexy often occurs in patients with no history suggestive of a pituitary tumor and may represent the first definite indication that a pituitary tumor is present.

DIFFERENTIAL DIAGNOSIS

The diagnosis of prolactinoma requires that other causes of hyperprolactinemic states and other mass lesions in the sellar and parasellar region are ruled out. The cause of hyperprolactinemia can be physiological, pharmacologically induced, or pathological (Table 2). A careful medical history including a list of current medications, results of a physical examination and routine chemical

TABLE 2
Causes of hyperprolactinemia

<table>
<thead>
<tr>
<th>Type</th>
<th>Causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiological</td>
<td>pregnancy, breast feeding</td>
</tr>
<tr>
<td></td>
<td>(suckling reflex)</td>
</tr>
<tr>
<td></td>
<td>stress</td>
</tr>
<tr>
<td>Pharmacological</td>
<td>neuroleptic medication</td>
</tr>
<tr>
<td></td>
<td>(phenothiazines, haloperidol)</td>
</tr>
<tr>
<td></td>
<td>atypical antipsychotic medications (clozapine, risperidone)</td>
</tr>
<tr>
<td></td>
<td>antidepressant medication (primarily amoxapine and rarely other)</td>
</tr>
<tr>
<td></td>
<td>tricyclic antidepressants, monoamine oxidase inhibitors, selective serotonin reuptake inhibitors)</td>
</tr>
<tr>
<td></td>
<td>antihypertension medication</td>
</tr>
<tr>
<td></td>
<td>(α-methyldopa, reserpine, verapamil)</td>
</tr>
<tr>
<td></td>
<td>metoclopramide</td>
</tr>
<tr>
<td></td>
<td>H-2 blockers (intravenous cimetidine)</td>
</tr>
<tr>
<td>Sellar/parasellar</td>
<td>prolactinomas</td>
</tr>
<tr>
<td></td>
<td>nonfunctioning pituitary</td>
</tr>
<tr>
<td></td>
<td>macroadenomas w/ stalk effect</td>
</tr>
<tr>
<td></td>
<td>germinomas</td>
</tr>
<tr>
<td></td>
<td>craniopharyngiomas</td>
</tr>
<tr>
<td></td>
<td>meningiomas</td>
</tr>
<tr>
<td></td>
<td>primary empty sella syndrome</td>
</tr>
<tr>
<td></td>
<td>lymphocytic hypophysitis</td>
</tr>
<tr>
<td></td>
<td>histiocytosis X</td>
</tr>
<tr>
<td></td>
<td>sarcoidosis</td>
</tr>
<tr>
<td></td>
<td>metastasis</td>
</tr>
<tr>
<td>Other disease</td>
<td>states</td>
</tr>
<tr>
<td></td>
<td>primary hypothyroidism</td>
</tr>
<tr>
<td></td>
<td>chest-wall lesion (trauma, surgery, herpes zoster)</td>
</tr>
<tr>
<td></td>
<td>hypothalamic dysfunction</td>
</tr>
<tr>
<td></td>
<td>chronic renal failure</td>
</tr>
<tr>
<td></td>
<td>cirrhosis</td>
</tr>
<tr>
<td></td>
<td>ectopic secretion of prolactin</td>
</tr>
<tr>
<td></td>
<td>seizures</td>
</tr>
</tbody>
</table>

J. K. Liu and W. T. Couldwell

Neurosurg. Focus / Volume 16 / April, 2004
analyses, and a thyroid-stimulating hormone level should be obtained. Because prolactin secretion is mediated by dopamine, any process that disrupts dopamine secretion, interferes with dopamine delivery through the portal system, or antagonizes the action of dopamine at its receptor may cause hyperprolactinemia. Prolactin levels lower than 25 ng/ml in women and 20 ng/ml in men are within the normal range.

Physiological hyperprolactinemia can occur from psychological and physical stress, such as exercise, surgery, and hypoglycemia, but the prolactin level rarely exceeds 40 ng/ml in these cases. It is critical to rule out pregnancy in women with hyperprolactinemia because prolactin levels are elevated during the first and second trimesters and peak in the third trimester to several hundred nanograms per milliliter. Prolactin levels decrease rapidly after delivery in postpartum women who do not breast feed. In those who do breast feed, however, serum prolactin levels remain elevated for the first few weeks, with sharp surges in prolactin secretion during suckling. Within a few months, the prolactin levels return to normal, despite continued lactation.

Medications, such as phenothiazines, butyrophenones, and metoclopramide, which antagonize dopamine receptors on lactotrophs are a common cause of hyperprolactinemia. Some antidepressant medications, such as monoamine oxidase inhibitors, tricyclic antidepressants, and selective serotonin reuptake inhibitors, may also elevate serum prolactin levels. Among antihypertension medications associated with hyperprolactinemia are α-methyldopa, reserpine, and verapamil. Administration of estrogen may also elevate prolactin levels. Medication-induced hyperprolactinemia is associated with levels of prolactin in the range of 25 to 100 ng/ml; it usually resolves in a few days to weeks after cessation of the offending drug.

Hyperprolactinemia can occur in approximately 20 to 30% of patients with primary hypothyroidism. Severe primary hypothyroidism results in elevated thyrotropin-releasing hormone levels, causing mild-to-moderate elevations in serum prolactin, which can lead to thyrotrh hypertrophy and pituitary hyperplasia. This situation can sometimes be misdiagnosed as a prolactinoma; therefore, it is important to obtain the concentration of thyroid-stimulating hormone to rule out primary hypothyroidism. Correction of primary hypothyroidism with hormone replacement almost always leads to normalization of prolactin levels within a few weeks or months. Chronic renal failure can also result in hyperprolactinemia because of decreased renal clearance of serum prolactin.

Masses in the sellar and parasellar region, such as craniopharyngiomas, nonfunctioning macroadenomas, hypothalamic tumors, granulomatous lesions, and lymphocytic hypophysitis, can compress the pituitary stalk and interrupt the dopaminergic inhibition of lactotrophs ("stalk-section effect"); this results in elevated prolactin levels in the range of 50 to 125 ng/ml. The stalk effect rarely causes the serum prolactin level to increase higher than 100 ng/ml, whereas prolactinomas typically generate much higher levels. In some patients with acromegaly, prolactin may be cosecreted with growth hormone.

Most causes of hyperprolactinemia can be ruled out on the basis of the patient’s medical history and physical examination, a pregnancy test, and thyroid and renal function tests. When other causes of hyperprolactinemia have been ruled out, an MR image with Gd administration should be obtained to confirm the diagnosis of a prolactinoma. Patients with signs and symptoms of visual loss or with neuroimaging-confirmed macroadenomas that extend beyond the sella turcica should undergo formal neuro-ophthalmological testing, including assessments of visual field and acuity. We also obtain serum levels of other pituitary-related hormones (growth hormone, insulin-like growth factor–1, prolactin, fasting morning cortisol, adrenocorticotropic hormone, luteinating hormone, follicle stimulating hormone, sex hormones) and thyroid function tests to determine anterior pituitary function in all patients with a neuroimaging-confirmed pituitary adenoma.

Interpreting Serum Prolactin Levels

Interpreting serum prolactin levels in conjunction with neuroimages is important in making the correct diagnosis of a prolactinoma to ensure proper treatment. In most cases, serum prolactin levels correlate with the size of the prolactinomas. Patients with microprolactinomas (size < 10 mm) are generally found to have serum prolactin levels that range between 100 and 250 ng/ml, although these levels may be higher. In those patients who harbor macroprolactinomas (size > 10 mm), the serum prolactin level is typically higher than 250 ng/ml. When the tumor has invaded the cavernous sinus, the serum prolactin level may be several thousand nanograms per milliliter. In macroadenomas associated with a mildly elevated prolactin level, approximately 50 to 125 ng/ml, the hyperprolactinemia can be attributed to the stalk-section effect from a nonfunctioning adenoma. Nevertheless, one should be aware of falsely low serum prolactin levels (25–150 ng/ml) in the face of a giant and invasive prolactinoma (> 3 cm); this is known as the high-dose “hook effect.” The hook effect occurs when radioimmunoassays are performed using the two-site (monoclonal “sandwich”) technique. At extremely high levels of serum prolactin, as in the presence of giant and invasive prolactinomas, the binding sites of the primary (capture) antibody and the secondary (signal) antibody become saturated and the true prolactin level is not accurately measured. The antibody binding curve is no longer proportional to the amount of serum prolactin, and the measured prolactin declines or hooks downward. This may be resolved by performing serial dilutions of the serum samples to overcome the hook effect.

MEDICAL TREATMENT

General Principles

The general objectives of the treatment of hyperprolactinemia are to suppress excessive hormone secretion and its clinical consequences, restore fertility, remove tumor mass, preserve residual pituitary function, and prevent disease recurrence or progression. In the treatment of microprolactinomas (tumors < 10 mm), removal of the
tumor mass is of secondary importance because the tumor is not likely to produce symptoms by mass effect. Pharmacological therapy with a dopamine agonist is the first consideration for the treatment of prolactinomas. The dopamine agonists approved for use in the US are bromocriptine and cabergoline. They are both very effective in normalizing serum prolactin levels, shrinking tumor mass, and restoring gonadal function. Bromocriptine should be used whenever pregnancy is a desired goal. Cabergoline is more expensive than bromocriptine, but easier to administer, usually better tolerated, and effective in patients who do not have a response to bromocriptine. If the prolactin level does not normalize or if the patient cannot tolerate bromocriptine, a change to cabergoline may be effective. Patients with macroadenomas generally require higher doses of bromocriptine or cabergoline than patients with microprolactinomas. Both dopamine agonists decrease the serum prolactin levels within days (Figs. 1 and 2) and result in a decrease in the size of the tumor and restoration of anterior pituitary function. Visual-field testing should be repeated 1 month after initiation of therapy, and MR imaging should be repeated at 6 weeks and again at 6 months after initiation of treatment. Serum prolactin levels should be monitored yearly.

Bromocriptine

Dopamine agonists bind to dopamine D2 receptors on the membrane of the lactotroph, inhibit prolactin synthesis and release, and reduce tumor volume. Bromocriptine, an ergot derivative, has been used effectively to treat hyperprolactinemia caused by prolactinomas since its approval by the US Food and Drug Administration in 1978. Bromocriptine has a high degree of potency and its use has resulted in the normalization of prolactin levels in more than 90% of cases and a significant reduction of tumor mass in approximately 85% of cases. Tumor shrinkage occurs rapidly within several days and is effective in decompression of the visual apparatus in patients with macroadenomas who present with visual deficits (Fig. 1). Some tumors are very responsive to bromocriptine and shrink by more than 80% within 6 weeks after the initiation of therapy. In some instances, the tumor will shrink sufficiently to become undetectable on neuroimaging studies. Bromocriptine has also been reported to restore gonadal and anterior pituitary functions in more than 80% of patients. Most female patients begin menstruation within 6 months after initiating therapy. Bromocriptine dosage is started at 1.25 to 2.5 mg orally once a day and increased over 2 to 3 weeks to 5 to 10 mg daily in divided doses. After normalization of serum prolactin levels, bromocriptine can be reduced to the lowest effective dosage. Cessation of the drug usually results in recurrent hyperprolactinemia and reexpansion of the tumor, although some studies show evidence of sustained normoprolactinemia following cessation of treatment. Approximately 10 to 25% of patients are partially or totally resistant to bromocriptine. Five
Management of prolactinomas

to 10 percent of patients may not be able to tolerate bromocriptine treatment because of drug-related effects, including dizziness, nausea, arrhythmias, and gastrointestinal discomfort; orthostatic hypotension can also limit its tolerance in some patients. The incidence of orthostatic hypotension may be decreased by increasing the dose slowly or administering the drug at night. In some women, intravenous administration (2.5–5 mg daily) may reduce gastrointestinal side effects; although some vaginal irritation may occur, this is generally well tolerated. Cardiovascular disease is a relative contraindication for bromocriptine administration. Dopamine agonists may precipitate psychotic episodes in patients requiring neuroleptic medications. At high doses, cold-induced vasospasm of the digits has also been reported.

Other clinicians have reported that tumor reduction is not likely to occur if it is not evident within 3 months after bromocriptine therapy is begun. It has been our observation that patients who do not respond by 6 weeks are unlikely to respond by 3 months and, therefore, our current practice is to obtain an MR image 6 weeks after initiating medical therapy to document tumor reduction. In the bromocriptine-treated patient who responds to medication, but experiences a failure in normalization of his or her serum prolactin levels and does not achieve restoration of gonadal function, consideration should be given to cabergoline therapy. A combined medical and surgical therapy may be indicated if the patient fails to respond to cabergoline administration. After surgical debulking of the lesion, hyperprolactinemia is often more responsive to medical therapy, requiring lower doses for control of serum prolactin. Because some patients may have persistent hyperprolactinemia and tumor progression during bromocriptine therapy, close monitoring of serum prolactin levels and serial MR images is mandatory.

Cabergoline and Other Dopamine Agonists

Cabergoline is a long-lasting, ergot derivative, selective dopamine D2 receptor agonist that has been used effectively in the treatment of both microprolactinomas and macroprolactinomas. Although more expensive than bromocriptine, cabergoline is associated with less frequent and less severe side effects. This drug appears to be superior to bromocriptine in normalizing prolactin levels, restoring gonadal function, and decreasing the size of the tumor.

It is very useful in patients who become resistant to or cannot tolerate the adverse effects of bromocriptine. This favorable profile enables escalation of doses to achieve normal serum prolactin levels in approximately 85% of patients with microadenomas and, more importantly, in a proportion of bromocriptine-resistant patients. Cabergoline may be administered at doses ranging between 0.5 and 1.5 mg once or twice per week. Because the drug dosing is less frequent and the drug is more tolerable, patient compliance may be better with cabergoline than with bromocriptine. The results of an important recent study have indicated that the majority of patients who respond to cabergoline with normalization of prolactin levels and a reduction in tumor size may experience remission of hyperprolactinemia following discontinuation of the drug. This indicates a potential for a curative treatment of many prolactinomas when using this agent (see later discussion).

Pergolide, lisuride, and quinagolide are other new agents that have been shown to suppress serum prolactin levels and decrease tumor size in patients with prolactinomas. These agents, however, have not been approved by the Food and Drug Administration for the treatment of prolactinomas. A recent cross-over study, in which cabergoline and quinagolide were compared, demonstrated a similar efficacy of better than 90% biochemical cure rates and a slightly better cost effectiveness with cabergoline.

Medical Therapy During Pregnancy

If pregnancy is a desired goal of the patient, bromocriptine should be used whenever possible because of its safety record in pregnancy. Although according to some reports cabergoline does not increase the risk of teratogenesis, experience in this area has been limited. Cabergoline should not be used as a primary therapy for infertility until there is more evidence supporting its safety during pregnancy. Approximately 90% of women treated with bromocriptine will resume menses within 6 months after the start of therapy. The subsequent pregnancy rates are the same as those of healthy women in the same age group. Women should be advised to use a mechanical form of contraception until their menstrual cycle is restored. Normal conception and pregnancy may then follow. Once a menstrual cycle has been missed, a pregnancy test should be obtained and bromocriptine should be discontinued immediately. Using bromocriptine in this manner has not been associated with an increased incidence of spontaneous abortion, ectopic pregnancy, or congenital malformation.

Elevation of estrogen levels during pregnancy stimulates DNA synthesis and mitosis in lactotrophs in the pituitary, resulting in tumor enlargement. These changes are usually transient and resolve after delivery. Nevertheless, the patient should be monitored closely for signs and symptoms of tumor expansion. The risk of symptomatic tumor enlargement is related to the initial size of the tumor before pregnancy. The risk of symptomatic tumor enlargement of a microadenoma during pregnancy ranges from 0.5 to 1%. Formal visual-field testing and serial MR imaging are usually not necessary unless the patient becomes symptomatic. For patients with macroadenomas, the risk of symptomatic tumor enlargement ranges from 15 to 35%. These patients may experience visual loss and symptoms of increased intracranial pressure. Women who harbor macroadenomas with suprasellar extension may be offered surgical debulking before conception. Patients with asymptomatic macroadenomas should undergo close monitoring with visual-field testing once every 3 months. An MR imaging study should be repeated if symptoms of tumor enlargement develop. If the patient experiences symptomatic tumor enlargement, bromocriptine therapy can be safely initiated during pregnancy. There does not appear to be an increased risk of congenital anomalies or spontaneous abortions associated with the use of bromocriptine during pregnancy. Alternatively, surgical decompression may be an option.
Withdrawal of Dopamine Agonist Therapy

After the prolactin level has remained normalized for at least 2 years and the size of the tumor has significantly decreased by at least 50% without evidence of compression of the optic chiasm, the dopamine agonist can be tapered to lower doses that continue to control hyperprolactinemia and tumor growth. If there is no evidence of cavernous sinus invasion, a trial of drug cessation may be instituted, as long as the patient receives close monitoring for tumor enlargement with serial MR imaging. Normoprolactinemia was sustained after cessation of bromocriptine in approximately 25% of women who were treated for at least 2 years, although cessation of bromocriptine therapy in patients with macroadenomas usually leads to tumor expansion and recurrence of hyperprolactinemia. Cessation of dopamine agonist therapy may be considered in postmenopausal women harboring microadenomas.

The success of sustained normoprolactinemia after cessation of bromocriptine therapy has been variable (range 7–38%). Tumor enlargement has been noted in approximately 10% of cases and probably relates to the duration of treatment before withdrawal of medication. Cessation of bromocriptine within 1 year after initiation of treatment appears to have a higher risk of tumor enlargement than cessation in those patients who have undergone longer treatments. Patients who have recurrent hyperprolactinemia after cessation of bromocriptine therapy may anticipate tumor recurrence, although the increase in the size of the lesion may be very slow.

There is some evidence that cabergoline may have the potential for definitive control of hyperprolactinemia and tumor growth. Colao, et al., reported sustained normalization of serum prolactin levels after withdrawal of cabergoline in 69% of patients with microprolactinomas and 64% of those with macroadenomas without evidence of new tumor growth. The rate of recurrence at 5 years was higher among patients with macroadenomas and those with microprolactinomas in whom there was neuroimaging evidence of residual tumor than in those in whom there was no neuroimaging evidence of residual tumor. Although there was no evidence of tumor recurrence in the face of recurrent hyperprolactinemia, the follow-up period was relatively short and probably insufficient to determine the true rate of tumor control.

Pituitary Apoplexy in Patients With Prolactinomas: Medical or Surgical Therapy?

Although most surgeons recommend emergency transsphenoidal decompression and administration of glucocorticoids for patients who present with pituitary apoplexy, some have reported excellent results with dopamine agonist therapy in patients with prolactinomas who display pituitary apoplexy. Brisman, et al., reported on a patient with a macroadenoma who presented with pituitary apoplexy and a third nerve palsy and was treated with bromocriptine and glucocorticoids. The third nerve palsy completely resolved within 48 hours. We have also used bromocriptine in the successful treatment of a patient with a macroadenoma who presented with severe headache and right ophthalmoplegia due to non-hemorrhagic pituitary apoplexy (Fig. 3). Although the optimal treatment for patients with prolactinomas who experience pituitary apoplexy remains controversial, we recommend an initial trial of dopamine agonist therapy in conjunction with glucocorticoids for patients who have no or minimal visual loss. If patients present with visual loss or if their visual loss progresses despite dopamine agonist therapy, emergency transsphenoidal decompression is indicated.

SUGICAL TREATMENT

Indications for Treatment

The efficacy of pharmacological therapy has limited the indications of resection of prolactinomas. Surgery is rarely curative in patients with macroadenomas and is usually reserved for patients who cannot tolerate medical therapy or for whom medical therapy is ineffective. Sustained normoprolactinemia following cessation of medical therapy has not been demonstrated in all cases and, therefore, there may be a role for curative surgery of microprolactinomas in patients who do not wish to receive long-term medical therapy. Surgery may also be indicated in patients who are dependent on antipsychotic medications, because dopamine agonists can precipitate psychotic episodes. In patients who have persistent hyperprolactinemia, progressive tumor enlargement, or persistent tumor mass effect despite maximal medical therapy, surgery may be indicated. Resection should be considered if impaired visual function or cranial nerve palsies are not immediately responsive to medical treatment, especially in patients with pituitary apoplexy as mentioned earlier. Even if surgery is not curative, as is the case with most macroadenomas (< 50% cure rate), tumor cyoreduction frequently increases the responsiveness of dopamine ago-
nists and thereby lowers the required dosage. Multimodal therapy with surgical debulking and subsequent adjuvant therapy (stereotactic radiosurgery or medical therapy) may be an effective strategy, especially if there is evidence of cavernous sinus invasion. Although some surgeons have reported that prior long-term treatment with dopamine agonists alters the consistency of the tumor and hinders its resection, we have not found this to be the case. With giant and invasive prolactinomas, pretreatment with a dopamine agonist may improve the safety and success of subsequent surgery.

The transsphenoidal approach is the initial preferred surgical route and is associated with low rates of morbidity and mortality. The extended transsphenoidal approach may be used in some cases in which the tumor is located beyond the confines of the sella turcica. Even in cases of giant prolactinoma, a transsphenoidal approach should be considered first; however, a pterional approach should be considered if there is a great deal of lateral tumor extension into the sylvian fissure.

Surgery for Microprolactinomas

In patients with hyperprolactinemia due to a microprolactinoma, transsphenoidal surgery by an experienced pituitary surgeon should be considered a potentially curative procedure (Fig. 4). The realization that medical therapy may require long-term treatment in some cases (a particularly significant factor in young patients) and consideration of the very low morbidity and mortality rates associated with contemporary transsphenoidal resection in experienced hands should factor into the decision-making process. Sustained normoprolactinemia following cessation of medical therapy occurs in some cases but not in others. The costs and burden of potentially long-term medical treatment in a young patient with a long life expectancy must be considered, especially in a young woman desiring restoration of fertility. In patients who harbor microprolactinomas and have serum prolactin levels lower than 200 ng/ml, transsphenoidal surgery performed by experienced pituitary surgeons at high-volume centers offers more than a 90% chance of biochemical and oncological cure with minimal risks of morbidity and mortality of less than 1%. Furthermore, the continued evolution of endoscopic approaches for tumor resection, which are somewhat less invasive, may reduce the morbidity rate of the surgical approach even further. The financial cost of treatment over a 10-year period in cases in which surgery is uncomplicated is similar to that of long-term dopamine agonist therapy.

In a recent study by Amar, et al., a cure rate of 91% was achieved in patients with microprolactinomas. There was a higher correlation with a biochemical cure if the preoperative serum prolactin level was less than 200 ng/ml. Similarly, in a study by Tyrrell, et al., women with preoperative prolactin levels higher than 200 ng/ml and those harboring larger and more invasive prolactinomas had poorer outcomes (37–41% cure rate). In their series, long-term remission was achieved in patients with microadenomas and noninvasive macroadenomas (that is, those with a moderate suprasellar extension and focal sphenoid sinus invasion). Lower postoperative serum prolactin levels are the best predictors of a long-term cure. Amar, et al., demonstrated that fasting morning serum prolactin levels obtained on the 1st postoperative day that were lower than 10 ng/ml predicted a 100% cure rate in microprolactinomas and a 93% cure rate in macroprolactinomas. A hormone level between 10 and 20 ng/ml still could be used to predict a 100% cure in patients harboring microprolactinomas, but not in those with macroprolactinomas (0% cure rate).

The choice of transsphenoidal surgery for microprolactinomas should take into account the size and location of the tumor, the preoperative serum prolactin level, the age of the patient, the desire for restoration of fertility, the efficacy and tolerability of dopamine agonists, and the experience of the surgeon. Surgery should not be considered unless a complete removal of the microprolactinoma with biochemical cure is an expected outcome. The presence of a symptomatic microprolactinoma, especially in a young patient, should remain an indication for microsurgical or endoscopic transsphenoidal resection.

STEREOTACTIC RADIOSURGERY

Stereotactic radiosurgery is becoming increasingly popular in the treatment of both functioning and nonfunction-
ing pituitary adenomas. Current MR imaging methods enable high-resolution images and dose planning with excellent accuracy. The preliminary data regarding tumor control and normalization of hypersecretory syndromes after radiosurgery appear favorable. Stereotactic radiosurgery can offer a therapeutic option to patients with prolactinomas as a secondary treatment after failed transsphenoidal surgery or failed medical therapy. Other authors have proposed stereotactic radiosurgery as a primary treatment for prolactinomas in patients who are reluctant to undergo long-term medical therapy or resection. The proximity of the pituitary gland to the region of radiosurgical treatment, however, may carry the risk of developing hypopituitarism. Longer follow-up periods are necessary to assess the likelihood of this complication.

Landolt and Lomax reported the cases of 20 patients who underwent gamma knife surgery for residual prolactinomas after unsuccessful transsphenoidal surgery or failed medical therapy. Five patients regained normoprolactinemia and medical therapy was discontinued. Eleven patients experienced improvement, which was defined by normalized prolactin levels or by levels that had decreased by 20% with the continued requirement of medical therapy at lower doses. Treatment failed in four patients who were receiving dopamine agonist therapy at the time of radiosurgery, indicating some radioprotective effect of the dopamine agonist therapy. The authors have suggested that this therapeutic regimen be stopped temporarily during radiosurgical treatment.

Pan, et al. described 164 patients with prolactinomas who underwent primary treatment with gamma knife surgery. A mean follow-up period of 33.2 months was available in 128 patients. Tumor growth was controlled in all but two patients who eventually underwent transsphenoidal surgery. A biochemical cure was attained in 52% of patients and an improvement in 28% of patients. Among this group, nine infertile women became pregnant 2 to 13 months after treatment and all gave birth to healthy children. One infertile woman who was unresponsive to bromocriptine became sensitive to the medication after radiosurgery. Case reports. Neurosurgery 42:913–916, 1998

References

Management of prolactinomas

Management of prolactinomas

