Ependymomas are derived from a neoplastic transformation of the ependymal cells, which line the ventricular system. They constitute 2 to 9% of all intracranial tumors and up to 12% of pediatric brain tumors. At least half of ependymomas present in the first two decades of life. More than 70% of ependymomas occur infratentorially, usually arising from the floor of the fourth ventricle in the midline. Approximately half of the supratentorial ependymomas arise from the wall of the ventricles, whereas the remainder seem to arise from the brain parenchyma itself. Ependymomas of the third ventricle are very rare. Although the ependymal surface area of the third ventricle is larger than that of the fourth ventricle, ependymomas are much more common in the posterior fossa.

According to one theory, ependymal tumors arise from ependymal cell “rests,” which tend to accumulate where the ventricles are sharply angled. Such areas would include the anterior spur of the aqueduct of Sylvius, the area adjacent to the trigone of the lateral ventricle, the region near the foramen of Luschka, and in the terminal cistern. Perhaps there is a paucity of such cell rests in the third ventricle. Parenchymal ependymomas are believed to arise from rests of ependymal cells remaining within the brain parenchyma during embryological development.

In childhood, ependymomas frequently fill the entire fourth ventricle, insinuating themselves into the foramina of Luschka as well as out through the foramen of Magendie onto the posterior aspect of the spinal cord. They can also frequently extend into the CPA through a distended foramen of Luschka. As it spills out into the basal cisterns, the tumor can mingle with the lower cranial nerves. Unfortunately, aggressive resection of such lesions arising in the CPA can be associated with significant postoperative deficits.

PRESENTATION, DIAGNOSTIC IMAGING, AND CSF DISSEMINATION

Most tumors arising within the lateral ventricles are benign. Because such tumors usually expand slowly and cause nonspecific symptoms, they may grow to a large size before detection. The most consistent neurological problem associated with lateral ventricle tumors, including ependymomas, is cognitive impairment associated with hydrocephalus. If the tumor is present at a critical site for CSF flow, acute obstructive hydrocephalus and sudden death may occur.
may produce manifestations of increased intracranial pressure, including headache, nausea, vomiting, and bilateral papilledema. They may also cause focal deficits such as aphasia and motor impairment. Seizures have been reported to occur in one third of the cases. In cases of third ventricle ependymomas, patients may present with vertigo and Parinaud syndrome. The more common infratentorial tumors may produce nausea, vomiting (particularly when the area postrema is involved), and manifestations of cerebellar compression, mainly ataxia and nystagmus.

On computerized tomography scanning, ependymomas are usually demonstrated as low density masses, often accompanied by hydrocephalus. With the administration of contrast material, the tumors usually enhance strongly and homogeneously. Calcifications and cystic components may also be seen. Magnetic resonance imaging without and with contrast is the preferred neuroimaging modality for both diagnosis and surgical planning because it provides greater soft-tissue detail, especially for infratentorial lesions. On T1-weighted MR images a hypoisoointense contrast-enhancing mass is demonstrated that typically fills and expands a ventricle. Often, the MR imaging appearance is heterogeneous. The administration of contrast may be necessary to distinguish the tumor margins from surrounding edema. Ependymomas are usually hyperintense on T2-weighted sequences. Images of a posterior fossa ependymoma are provided in Fig. 1, and images of a supratentorial intraventricular ependymoma are given in Fig. 2.

As with the more malignant medulloblastomas, ependymomas can spread extensively throughout the CSF pathways. Among 754 patients with intracranial ependymomas reported before 1983, evidence of CSF seeding was observed in 94 (12%). Because of this, in the past there was a tendency to include diagnostic myelography in the workup of patients with posterior fossa ependymomas. This has shed light on the incidence of seeding. Salazar found that CSF seeding of intracranial ependymoma is: 1) more common in infratentorial tumors; 2) more likely to occur in the spinal subarachnoid space than over the cerebral hemispheres; and 3) more frequent with higher-grade tumors. Rezai, et al., reported on a series of 52 patients with intracranial ependymomas treated with surgery between 1986 and 1994. In five patients (9.6%) CSF seeding was demonstrated. Several predisposing factors for dissemination were found: 1) younger age; 2) inability to achieve gross-total resection; 3) higher proliferative indices; and 4) higher-grade tumors. The incidence of symptomatic seeding in patients with ependymoma has been reported to be lower (< 5%). Because of this, preoperative MR imaging of the whole spine (without and with Gd administration) is recommended in patients in whom ependymoma is suspected.

PATHOLOGICAL FEATURES OF EPE NDYMOMAS

In the World Health Organization classification of ependymal tumors, the lesions are divided into four types: 1) ependymoma (the focus of this paper); 2) anaplastic ependymoma; 3) myxopapillary ependymoma; and 4) subependymoma. Microscopically, ependymal tumors show both epithelial and glial features. The epithelial features include the lining up of cuboidal cells into linear tubules, which in cross-section appear as rosettes; hence, the name “ependymal rosettes.” Ependymal tumors exhibit-
Intracranial ependymoma

it their glial heritage in the form of cell processes packed with glial fibrillary acidic protein–immunoreactive filaments, which are aligned around blood vessels. These are called “perivascular pseudorosettes,” and they contain a perivascular eosinophilic zone, together with the perivascular nuclei. Both ependymal rosettes and perivascular pseudorosettes are striking and their presence is diagnostic. When the ependymal cells are present in low density and these processes are abundant, the lesion can resemble a well-differentiated astrocytoma.

Ependymomas can be further subdivided into the cellular, papillary, clear-cell, and tanycytic varieties. On histological examination, cellular ependymomas are hypercellular, with narrow perivascular pseudorosettes, a benign cellular appearance, and little proliferative activity. An example of a cellular ependymoma is shown in Fig. 3.

In contrast, the papillary ependymoma subtype contains a predominantly tubulovillous architecture. This variety is exceedingly rare. Clear-cell ependymomas possess tumor cells characterized by an oligodendrocyte-like clear cytoplasm. They may mimic to perfection both the oligodendroglioma and the neurocytoma on routine histological examination.

The differential diagnosis of a clear-cell ependymoma includes glioneurocytoma. Tanycytic ependymomas, on the other hand, with their elongated cells and less conspicuous pseudorosettes, may resemble astrocytomases.

SURGERY, RADIATION THERAPY, AND CHEMOTHERAPY

Treatment of intracranial ependymomas may include surgery, radiation therapy, and chemotherapy. Surgery is the mainstay of therapy, and total resection is recommended if possible. Preoperative placement of a CSF shunt is often required. In children with large posterior fossa tumors, however, upward herniation resulting in death has followed ventriculoperitoneal shunt placement. At the time of craniotomy, the patient, especially if a child, is usually placed in the prone position. The sitting position has also been used, despite its higher risk of air embolism. As with other intracranial tumors, perioperative steroid agents are very useful. In their study of 22 infants and children with posterior fossa ependymomas, Tomita et al. found that incomplete tumor resection almost invariably led to recurrence; hence, they recommended that an attempt should be made to excise posterior ependymomas totally at the initial craniotomy. The completeness of resection is confirmed by postoperative MR imaging.

Surgery often results in subtotal removal because many ependymomas have invasively into critical structures such as the brainstem and/or into cranial nerves in the CPA and the associated vasculature. Because of this, a complete resection is not feasible in approximately 50% of patients. Thus, ependymal tumors show a high recurrence rate. Foreman et al. concluded that the role of complete resection, possibly including a second-look surgery, needs further evaluation. Postoperative complications are related to tumor location and have been reported to include cranial nerve palsies, increased ataxia, mutism, and (rarely) death. It is interesting to mention that a possible postoperative resection-related complication of a posterior fossa ependymoma is mutism, a state in which a patient is conscious but unwilling or unable to speak. This has been reported to occur, especially when the lesion involves the vermis, often weeks after surgery. Although cerebellar mutism is an infrequent complication, neurosurgeons should be aware that it might occur and that it generally resolves over a period of months.

Intracranial ependymal tumors are considered to be relatively radiosensitive. Radiation therapy seems to increase the survival period and delay recurrence for several years. In an informative study of 10 adults recently reported by Donahue and Steinfield, it was concluded that postoperative radiation therapy is effective in preventing regrowth of intracranial ependymoma following subtotal resection. Radiation ranging from 3500 to 7200 cGy doses have been given over 5 to 6 weeks. Treatment fields should cover the initial tumor bed with a 1- to 2-cm margin to avoid causing long-term radiation damage. For tumors in the posterior fossa, the recommended dose is 5400 cGy. Craniospinal–axis fields are used only when spinal seeding is radiologically or pathologically evident. In young children (<5 years of age) with brain tumors, the provision of radiation therapy is usually avoided, if possible. Because of the severity of this disease, however, even young children with intracranial ependymomas usually require chemotherapy and radiation therapy.

Radiosurgery has also been reported to be an option in patients with ependymomas. In a study by Grabb et al., which included 25 children with a variety of surgically incurable brain tumors of glial origin, it was concluded that radiosurgery has a role in the adjuvant management of unresectable glial neoplasms of childhood, including ependymomas. Based on a study conducted by the Pediatric Oncology Group in which 48 children younger than 3 years of age with intracranial ependymomas were treated with prolonged postoperative chemotherapy and delayed radiation therapy, future radiation treatment trials should emphasize maximum resection and a delay in radiation therapy of no more than 1 year.
To date, chemotherapy has not yielded a significant improvement in survival for patients with ependymal tumors. Children with subtotally resected ependymomas, however, have been treated with chemotherapy in attempts to avoid radiation therapy. In very young children with brain tumors, primary chemotherapy, omitting radiation therapy, has been reported to improve neurodevelopmental outcome and survival.\(^1\) Ater, et al.,\(^2\) reported on 17 consecutive children (< 3 years of age) treated between 1976 and 1988 in whom either medulloblastoma or ependymoma was diagnosed. The patients received MOPP (mechlo-rethamine, vincristine [oncovine], procarbazine, and prednisone) as a primary therapy following excision or biopsy sampling of the tumor. Ten of the 17 patients survived without evidence of disease; median survival time in two with ependymoma was 13 and 16 years, respectively, and in eight with medulloblastoma median survival was 10.6 years. Two of the 10 harbored ependymomas (five total) (the other eight were medulloblastoma).\(^5\) Additionally, preliminary data have suggested that in children with incompletely resected tumors, chemotherapy may be of benefit as an adjunct to second-look surgery.\(^2\)

For chemotherapy of ependymomas, the platinum compounds, cisplatin and carboplatin, may be the most effective agents discovered to date.\(^6\) Treatments with other agents such as cyclophosphamide, ifosfamide, methotrexate, vincristine, procarbazine and nitroureas (often in combination, with up to eight drugs) have been attempted but have shown limited benefit.\(^7\) Limited studies of additional agents have also been conducted, and future studies are being planned.\(^2\) Tomita, et al.,\(^3\) concluded that, according to their experience, recurrent tumors are resistant to chemotherapy. At this point, the data are not sufficient to justify the use of chemotherapy in patients with ependymomas, except in younger children (in whom radiation therapy is not recommended) or patients in whom surgery and radiation therapy have failed to control tumor growth.

PROGNOSIS AND SURVIVAL

Generally, the 5-year survival rate for patients (age > 5 years) with intracranial ependymomas is approximately 50 to 60% and the 10-year survival is approximately 40 to 50%.\(^2\) In general, survival times have improved in the more recent series.\(^8\) Prognosis is poor because of the difficulty of total excision and because of CSF dissemination.\(^9\) The occurrence of leptomeningeal disease in very young children may be a factor in their poor outcome.\(^7\) The best results have been achieved by debulking the tumor as much as possible and then administering radiation therapy.\(^3\)\(^,\)\(^7\)\(^,\)\(^2\)\(^2\)\(^2\)\(^2\) The following clinical variables seem to favor long-term survival: 1) adult age; 2) tumors located within the cerebral hemisphere; 3) more benign histological appearance; and 4) total resection. Unfavorable prognostic factors include: 1) younger age; 2) posterior fossa location; 3) anaplastic disease; and 4) subtotal resection.\(^2\)\(^7\)

In a review of 30 patients harboring histologically confirmed posterior fossa ependymomas who underwent surgery at the Mayo Clinic (age range 1–69 years), the following factors were found: 1) younger (≤ 5 years) age was associated with a poorer prognosis; 2) there was a trend toward a better 5-year survival rate with a gross-total resection; 3) tumors recur at the primary intracranial site; and 4) symptomatic spinal seeding does not occur frequently.\(^2\) In another retrospective study of 31 children presenting with intracranial ependymomas between 1976 and 1993, it was found that failure at the primary site was the major obstacle to improved cure rates.\(^16\)\(^,\)\(^2\)\(^3\) This study confirmed the prevailing impression that local disease control is the major factor in predicting ependymoma recurrence.\(^2\)\(^3\)

CONCLUSIONS

Intracranial ependymomas are relatively rare gliomas, the treatment for which is primarily surgical but may also include radiation therapy or radiosurgery for residual or recurrent tumor. Histologically, ependymomas have characteristic ependymal rosettes and perivascular pseudorosettes. The role of chemotherapy appears limited but has been attempted, especially in the very young, in order to avoid the deleterious effect of radiation therapy. In the future, advances in surgical technique and/or in the development of new therapies (for instance, based on monoclonal antibodies) may improve the outlook for patients with these tumors.

Acknowledgments

The authors would like to thank Drs. Howard Halpern, Elizabeth Cochran, Helen Johnstone, and Mahood Mafee for their reviews of the manuscript.

References

Intracranial ependymoma

Manuscript received July 2, 2002. Accepted in final form August 15, 2002.
The authors received support from the Department of Neurosurgery at the University of Illinois at Chicago.
Address reprint requests to: Herbert H. Engelhard, M.D., Ph.D., Department of Neurosurgery, The University of Illinois at Chicago, 912 South Wood Street, Chicago, Illinois 60612. email: hhengel@uic.edu.