Recurrent intraventricular and subarachnoid hemorrhage due to an intracranial schwannoma

Case illustration

FREDERIC P. COLLIGNON, M.D., JONATHAN A. FRIEDMAN, M.D., AND JOHN L. D. ATKINSON, M.D.

Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota

KEY WORDS • intraventricular hemorrhage • subarachnoid hemorrhage • schwannoma • cerebral angiography

Bleeding from an intracranial tumor is a rare cause of subarachnoid hemorrhage (SAH) not visualized on angiography. Recurrent SAH from an intracranial schwannoma has not been described. We report a case of recurrent intraventricular hemorrhage (IVH) and SAH caused by an intracranial schwannoma of the 11th cranial nerve.

This 15-year-old girl presented to an outside hospital with acute onset of headache and vomiting. Computerized tomography (CT) scans demonstrated IVH within the lateral, third, and fourth ventricles, and cisternal SAH. Results of a four-vessel cerebral angiogram were normal and the patient made a complete recovery. Two months later, the patient again experienced severe headache and neck pain. A CT scan demonstrated recurrent IVH in the fourth ventricle and SAH. A new cerebral angiogram was nondiagnostic and the patient was transferred to our institution. Magnetic resonance (MR) imaging revealed a small, hemorrhagic extraaxial lesion adjacent to the right lateral medulla (Fig. 1). An encapsulated mass with central thrombus adherent to the 11th cranial nerve was resected through a retrosigmoid craniectomy. Pathological analysis of the lesion revealed schwannoma. The patient made a complete recovery.

Both IVH and SAH with negative findings on cerebral angiography can rarely be attributed to an intracranial schwannoma and may be recurrent. To exclude the presence of an intracranial tumor, the performance of MR imaging should be considered following nondiagnostic cerebral angiography in patients with IVH or SAH.

References


FIG. 1. Unenhanced axial T₁- and T₂-weighted MR images demonstrating a right-sided extraaxial mass adjacent to the medulla, with signal characteristics consistent with subacute hemorrhage.