Supracerebellar transtentorial approach to posterior temporomoidal structures

Technical note

Yasuhiro Yonekawa, M.D., Hans-Georg Imhof, M.D., Ethan Taub, M.D., Marijan Curcic, M.D., Yasuhiko Kaku, M.D., Peter Roth, Heinz Gregor Wieser, M.D., and Peter Groscurth, M.D.

Department of Neurosurgery, Anesthesiology, Neurology, and Anatomy, Zurich University Hospital, Switzerland

Access to posterior temporomoidal structures around the tentorial notch may be gained by occipital interhemispheric, subtemporal, or temporal transventricular approaches. Each approach carries its own inherent risk of compromising visual fields and/or language function (when performed in the dominant hemisphere) because of the need for retraction or cortical incision. The SCTT approach was devised to avoid these risks and was originally reported, as far as we can determine from our review of the literature, by Voigt and Yasargil in 1976 for removal of a cavernous angioma in the left parahippocampal gyrus.

In this communication we describe our experience in using the SCTT approach to structures such as the posterior hippocampal formation and the PCA (P₂ and P₃ segments), which does not place these highly important functional areas at risk.

Key Words • surgical approach • parahippocampal gyrus • posterior cerebral artery • aneurysm • revascularization

Clinical Material and Methods

Case Selection

The SCTT approach was used in 16 patients who underwent surgery at the Department of Neurosurgery of Zurich University Hospital between September 1997 and May 2000. The clinical data are listed in Table 1. There were seven female and nine male patients in this group, and their mean age was 47 years (range 3–66 years).

Indications for surgery included six tumors confined to the posterior hippocampus (two low-grade astrocytomas [WHO Grade II], two anaplastic astrocytomas [WHO Grade III], one neuroglial angiodysplasia, and one metastasis of a melanoma), five tumors occupying the whole temporomoidal region (two astrocytomas [WHO Grade II] and three glioblastomas multiforme), three aneurysms (one ruptured aneurysm at the P₂-P₃ junction, one giant aneurysm at the P₂ segment of the PCA treated by neck clipping, one giant aneurysm of the proximal P₂ segment treated by ligation, and one BA–SCA giant aneurysm treated by OA–PCA bypass), one case of Moyamoya disease treated by indirect revascularization of the PCA territory, and one case of medically intractable epilepsy.

Abbreviations used in this paper: BA = basilar artery; OA = occipital artery; PCA = posterior cerebral artery; PTA = posterior temporal artery; P₂ = P₂ segment of PCA; P₃ = P₃ segment of PCA; SCA = superior cerebellar artery; SCTT = supracerebellar transtentorial; WHO = World Health Organization.
Operative Technique

The SCTT approach is performed in the following manner (Fig. 1). The patient is placed in the sitting position. Fixation of the head is the same as that used during the standard posterior fossa craniotomy, including the infratentorial supracerebellar approach. A paramedian incision is made, as described elsewhere.°,11,24,26

The tentorium is now cut from below, beginning around its position and secured with sutures or fibrin glue (Tissu-

drome of the posterior margin of the tentorial hiatus. One can now inspect the posterior inferior surface of the temporal lobe (parahippocampal gyrus and lingual gyrus) along with two branches of the PCA, the parietooccipital artery and the PTA. If one lifts or partially resects the parahippocampal gyrus, one can discern the P2-P3 junction of the PCA.

Once the operation (for example, aneurysm clipping, tumor removal, or posterior hippocamppectomy) has been accomplished, the free edge of the tentorium is restored to its position and secured with sutures or fibrin glue (Tissucol). The craniotomy is then closed in a routine fashion.

Clinical characteristics of 16 patients who underwent neurosurgical procedures via the SCTT approach*

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Age (yrs), Sex</th>
<th>Diagnosis</th>
<th>Symptoms</th>
<th>GOS Score at 3 Mos Postop</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57, F</td>
<td>multiple aneurysms</td>
<td>SAH, rt temporal ICH, WFNS Grade IV</td>
<td>good recovery</td>
<td>ruptured rt PCA aneurysm</td>
</tr>
<tr>
<td>2</td>
<td>65, M</td>
<td>rt BA-SCA giant aneurysm</td>
<td>rt-sided ocular ptosis</td>
<td>good recovery</td>
<td>rt OA–PCA bypass</td>
</tr>
<tr>
<td>3</td>
<td>37, F</td>
<td>lt temporal tumor</td>
<td>seizures</td>
<td>good recovery</td>
<td>astrocytoma in posterior hippocampus</td>
</tr>
<tr>
<td>4</td>
<td>18, F</td>
<td>lt temporal tumor</td>
<td>seizures</td>
<td>good recovery</td>
<td>neuroglial angiodysplasia in lt lingual gyrus</td>
</tr>
<tr>
<td>5</td>
<td>47, F</td>
<td>tumor in the quadrigeminal cistern</td>
<td>vertigo, headache</td>
<td>good recovery</td>
<td>oligoastrocytoma originating in lt parahippocampal gyrus</td>
</tr>
<tr>
<td>6</td>
<td>20, F</td>
<td>rt temporal tumor</td>
<td>seizures</td>
<td>good recovery</td>
<td>lt P2 ligation</td>
</tr>
<tr>
<td>7</td>
<td>66, F</td>
<td>ruptured giant lt PCA aneurysm</td>
<td>SAH, lt temporal ICH, WFNS Grade IV</td>
<td>moderately disabled</td>
<td>lt P2 ligation</td>
</tr>
<tr>
<td>8</td>
<td>56, M</td>
<td>rt temporal tumor</td>
<td>POS</td>
<td>good recovery</td>
<td>glioblastoma multiforme</td>
</tr>
<tr>
<td>9</td>
<td>50, M</td>
<td>lt temporal tumor</td>
<td>POS, seizures</td>
<td>moderately disabled</td>
<td>astrocytoma</td>
</tr>
<tr>
<td>10</td>
<td>58, M</td>
<td>rt temporal tumor</td>
<td>POS, seizures</td>
<td>good recovery</td>
<td>glioblastoma multiforme</td>
</tr>
<tr>
<td>11</td>
<td>47, F</td>
<td>multiloculated tumor</td>
<td>POS, seizures</td>
<td>moderately disabled</td>
<td>AA in lt parahippocampal gyrus</td>
</tr>
<tr>
<td>12</td>
<td>3, M</td>
<td>moyamoya disease</td>
<td>TIA</td>
<td>good recovery</td>
<td>indirect revascularization of rt PCA territory</td>
</tr>
<tr>
<td>13</td>
<td>48, M</td>
<td>pharmacotherapy-resistant epilepsy</td>
<td>recurrence of seizures</td>
<td>good recovery</td>
<td>rt selective amygdalol hippocampectomy performed in 1989</td>
</tr>
<tr>
<td>14</td>
<td>63, M</td>
<td>lt temporal tumor</td>
<td>POS, seizures</td>
<td>moderately disabled</td>
<td>glioblastoma multiforme</td>
</tr>
<tr>
<td>15</td>
<td>58, M</td>
<td>rt temporal tumor</td>
<td>POS, seizures</td>
<td>good recovery</td>
<td>melanoma metastasis in lt parahippocampal gyrus</td>
</tr>
<tr>
<td>16</td>
<td>57, M</td>
<td>rt temporal tumor</td>
<td>POS, seizures</td>
<td>good recovery</td>
<td>AA in lt parahippocampal gyrus</td>
</tr>
</tbody>
</table>

* AA = anaplastic astrocytoma; GOS = Glasgow Outcome Scale; ICH = intracerebral hematoma; POS = psychoorganic syndrome; SAH = subarachnoid hemorrhage; TIA = transient ischemic attack; WFNS = World Federation of Neurosurgical Societies.

Illustrative Cases

Case 1

This 57-year-old woman sustained a subarachnoid hemorrhage with a hematoma in the right temporal lobe in December 1998 (Fig. 2 upper).

Examination. Angiography revealed multiple aneurysms, including a ruptured aneurysm of the right PCA at the P2-P3 junction (Fig. 2 center). The patient was admitted to the hospital on the day of rupture (Day 0) and assigned World Federation of Neurosurgical Societies’ Grade IV and Fisher Grade 4; she underwent surgery on the same day.

Operation. With the patient in the sitting position, a right paramedian occipitobasalcutal osteoplastic craniotomy was performed. After temporary clipping of the P2 segment, which lasted 10 minutes, the ruptured aneurysm at the P2-P3 junction was radically clipped via the SCTT approach. The intracerebral hematoma was partly removed through a cortical incision in the lateral occipitotemporal gyrus.
Fig. 1. Drawings depicting the operative steps used in the SCTT approach. A: Craniotomy. B: Incision of the tentorium. C: Exposure of the parahippocampal gyrus and the PCA after downward retraction of the tentorium and cerebellum.
Postoperative Course. The patient recovered well from the procedure. Postoperative vasospasm was treated successfully with hemodynamic therapy and selective endovascular application of papaverine. The unruptured aneurysms were treated during two subsequent craniotomies after the patient recovered from the first procedure. The final follow-up angiograms obtained in March 1999 confirmed complete clipping of all aneurysms (Fig. 2 lower). The patient’s outcome was good, as determined using the Glasgow Outcome Scale, 4 months later.

Comment. Other approaches that have been used for clipping aneurysms in this location include the conventional subtemporal,14 occipital interhemispheric,8 23 and transsylvian–transventricular approaches.27 This case shows that aneurysm clipping in the P2–P3 junction of the PCA is technically feasible via the SCTT approach, without retraction of the temporal lobe or occipital lobe. Despite an intraoperative premature rupture, the aneurysm was successfully clipped after temporary clipping of the P2, which lasted no longer than 10 minutes.

Case 2
This 65-year-old man was admitted to the hospital in March 1999 because he was experiencing progressive right-sided ocular ptosis of 1 month’s duration.

Examination. Magnetic resonance imaging revealed a giant aneurysm of the upper BA, which was subsequently localized using angiography to the right BA–SCA junction.

Operation. In preparation for an intended long temporary or permanent occlusion of the proximal BA, an OA–PCA bypass procedure was performed via the SCTT approach. A linear incision was made over the OA, which was dissected free. A right paramedian occipitotemporal craniotomy was then performed, the tentorium was incised, and the PTA (diameter 1 mm) was dissected on the inferior surface of the parahippocampal gyrus. A microsurgical end-to-side bypass was performed between the OA and the PTA (Fig. 3).
This aneurysm was finally treated successfully by using an endovascular coiling procedure because neither direct clipping nor BA occlusion was possible. Patency of the OA–PCA bypass was not confirmed at the time of the aneurysm coiling procedure.

Postoperative Course. The patient was discharged in April 1999, with unchanged ophthalmoplegia.

Comment. This case also demonstrates the feasibility of using the SCTT approach for posterior fossa revascularization (OA–PCA bypass or OA–SCA bypass), although bypass patency could not be confirmed at the time of follow-up angiography. Vascularization performed using this approach does not compromise the performance of either the pterional or the subtemporal approach for aneurysms of this location.

Case 3

This 37-year-old woman was admitted to the hospital in May 1999 because she suffered from medically intractable partial epilepsy with complex partial seizures (manifested by episodes of flush over the entire body).

Examination. Magnetic resonance images revealed a mass in the posterior hippocampus on the dominant (left) side (Fig. 4 upper). The lesion was removed via a left-sided SCTT approach. The lesion was difficult to find because it was located subcortically; however, it was successfully localized with the aid of intraoperative electrocorticography, which revealed spiking around the periphery of the lesion. The final histopathological diagnosis was low-grade astrocytoma (WHO Grade II). There were no surgical complications and the patient was discharged 13 days after admission.

Postoperative Course. Follow-up MR images obtained 3 months later revealed complete removal of the posterior hippocampal formation without any sign of residual tumor (Fig. 4 lower). The patient has remained seizure free since then.

Comment. The alternative approach to removing this tumor—a conventional temporal approach—would have been difficult to perform without retraction or incision of the dominant temporal lobe, which would have increased the risk of a neurological complication.

Results

Characteristics of the patients and operative results are listed in Table 1. There were no postoperative complications related to the SCTT approach.
Anatomical Structure of the Tentorium and the Posterior Temporomedial Territory of the Brain

Knowledge of the topographical anatomy around the tentorial incisura15 is necessary for the performance of this surgery. One must take care to minimize injury to the bridging veins between the cerebellum and the tentorium. In our experience, however, significantly large bridging veins must be coagulated and cut in approximately one third of cases to make this approach feasible. We have not experienced any complications after this vein sacrifice, although such complications have been reported by others.6 The tentorium may contain large venous lakes or sinuses, which are reportedly most commonly located in its medial third portion.9 These should be carefully closed using metal clips when the tentorium is incised. The incision is best made from the lateral to the medial end because the free edge of the tentorium suddenly becomes steep toward its medial end, and is thus difficult to cut from the medial to the lateral end.

Upon a slightly downward retraction of the incised tentorium together with the cerebellum, one obtains an overview of the posterior temporomediial structures around the tentorial notch: the isthmus, parahippocampal gyrus, lingual gyrus, PCA with its branches (including the PTA and the parietooccipital artery) and other structures including the SCA, trochlear nerve, quadrigeminal plate, pial body, and vein of Galen with its major tributaries (Fig. 1C).

Removal of the parahippocampal gyrus yields exposure of the following structures: the pulvinar, lateral and medial geniculate bodies, crus cerebri, vessels such as the vein of Rosenthal and its tributaries, the trunk of the PCA with its branches, and the temporal horn with its choroid plexus (Fig. 5).

Incision and replacement of the tentorium have caused no complications so far, except for temporary bradycardia or arrhythmia in some patients at the time of the incision. These may have been caused by trigeminal nerve irritation, and the anesthesiologist should be forewarned of this possibility.

Surgical Approaches

The infratentorial supracerebellar approach was first reported by Oppenheim and Krause12 in 1913 and was later refined by Zapletal30 and Stein.17 It was advocated by Yasargil13,22 in 1984 and, subsequently, by others as a useful approach to the dorsal portion of the midbrain and pons.6,11,29 The advantages and disadvantages of surgery performed while the patient is in the sitting position have been discussed elsewhere.16,25

The SCTT approach described by Voigt and Yasargil10 in 1976 has two major advantages. 1) It provides ease of access to the posterior hippocampus, enabling posterior hippocampectomy, which could not be performed via Yasargil’s transsylvian–transventricular approach4,29 or other approaches10,13,19 without risking injury to normal structures and, thus potentially leading to a postoperative neurological deficit. 2) It provides ease of access to the P\textsubscript{2}–P\textsubscript{3} junction of the PCA and, thus, aneurysms at this site may be managed with minimal risk. We consider the SCTT approach to be as good as, or better than, all other aforementioned approaches: subtemporal, occipital interhemispheric, and transsylvian–transventricular.

A microsurgical OA–PCA bypass procedure can be performed without retraction of the temporal lobe, which has been one of the causes of serious complications of revascularization procedures to the PCA or the SCA.1,18,26 A bypass procedure of this kind performed via the SCTT approach remains technically difficult, however, because the bypass site lies very deep within the surgical opening.

The technique described in this paper differs slightly from that of the original description by Voigt and Yasargil10 in that a paramedian rather than midline craniotomy is performed. We believe this variation offers easier access to more laterally localized lesions.

Conclusions

The SCTT approach performed with the patient in the sitting position is used to greatest benefit in surgery of the posterior temporomediial region: removal of tumors in this location, posterior hippocampectomy, clipping of aneurysms located at the P\textsubscript{2}–P\textsubscript{3} junction, and OA–PCA bypass.

Acknowledgments

The authors are indebted to Mrs. Schurter and Ms. Frick for their secretarial assistance and to Mr. Stillhard for his photographic work.
Supracerebellar transtentorial approach to posterior temporomedial structures

References

Manuscript received December 20, 1999. Accepted in final form October 4, 2000.

Address reprint requests to: Yasuhito Yonekawa, M.D., Department of Neurosurgery, University Hospital, Frauenklinikstrasse 10, CH-8091 Zürich, Switzerland. email: yonekawa@nch.unizh.ch.