gland have given rise to a tumour that contains no granular elements. This has led to the production of an hypophysal tumour which essentially is an adenoma derived from cells in the pregranulocytic phase of development. Such a tumour, no other specific example of which has previously been classified, might well be referred to as a "pregranulocytic adenoma" of the pituitary gland.

SUMMARY

The clinical and pathological features of a large pituitary adenoma are described. This tumour consisted of undifferentiated, non-granular, pituitary cells of foetal type. It is suggested that this type of tumour might be called a pregranulocytic adenoma of the hypophysis.

Thanks are due to Mr. S. Woodward-Smith of the Department of Medical Artistry, The University of Sydney, for carrying out the photographic work in connection with this paper.

REFERENCES


TANTALUM DISCS FOR COVERING TREPHEME DEFECTS AND TANTALUM CLIPS FOR LIGATION OF INTERNAL CAROTID ARTERY INTRACRANIALY*

LESTER A. MOUNT, M.D.

Department of Neurosurgery, Neurological Institute, and Vanderbilt Clinic, and Department of Neurology, College of Physicians and Surgeons, New York City

(Received for publication September 30, 1947)

The appearance of a depression at the site of trephine or Hudson drill openings is a frequent occurrence in the practice of all neurosurgeons. The replacement of the bone button or

* Presented at the April 1947 meeting of the New York Society of Neurosurgery, New York City.
of bone dust does not prevent the subsequent appearance of the depression in many cases. This is disfiguring when it is located in the forehead, or in exposed areas in bald-headed patients. It can be avoided by covering the defect with a circular piece of tantalum, 0.01

![Fig. 1. A drawing of the tantalum disc viewed from top and bottom.](image)

![Fig. 2 (left). X-ray of skull showing a tantalum disc in place and two tantalum clips on internal carotid artery. Note relative size as compared with silver clip placed on dura. Fig. 3 (right). Special clip holder. Shaft is 14.5 cm. long, jaws are 3.0 cm. long, and handles 9.5 cm. long. Grooves in jaws are 1.25 mm. wide. There is a screw adjustment at handle end of shaft, the tip of which is shown. The screw regulates the opening of the jaws.](image)

inches thick and about 4 mm. greater in diameter than the opening. Two parallel cuts, 2–3 mm. in length, are made on opposite sides of the disc. The resultant sections are then bent downward at right angles to the rest of the disc and curved to conform to the rounded cranial
opening (Fig. 1). Further shaping, if necessary, can be done with pliers and a peen hammer. The disc is then ready to cover the defect. The two downward projections inserted into the opening prevent the disc from slipping laterally and the pericranium sutured over the top prevents it from slipping out of the opening. A mortise is unnecessary. The discs may be prepared before operation and only minor moulding need be done at the operating table."

In the ligation of the internal carotid intracranially a clip longer than the ordinary silver clip is desirable. Such a clip can be cut from scrap pieces of a sheet of tantalum of 0.015 inch thickness and any desired width. The width of the clip found most satisfactory is 1.25 mm., and the length 10 mm. (Fig. 2). A special clip holder is used (Fig. 3).

A NEW BURR

HENRY T. WYCIS, M.D.

Department of Neurosurgery, Temple University Hospital and Medical School,
Philadelphia, Pennsylvania

(Received for publication September 2, 1947)

Neurosurgeons have sought various ways and means for reducing operative time in neurosurgical procedures. Forming burr holes for the passage of Gigli saws is one of the time-consuming steps in a craniotomy. With the Hudson brace 3 separate drills are usually necessary to make a single burr opening. With construction of 5 holes in a routine craniotomy bone flap this consumes valuable time, particularly in the face of bleeding. With the introduction of the perforator and ball this time was reduced. McKenzie commented on the unsatisfactory performance of various perforators and ball burrs and designed a set of instruments which he thought quite satisfactory. Recently Carmody still further reduced the operative time by devising a combined perforator and drill. His instrument, while having several advantages over former ones, has one serious drawback in that it has no safeguard against dural penetration.

For over a year the author has used a single burr—capable of making a single adequate hole, and yet automatically stopping when the inner table of the skull has been perforated. The instrument does not chatter nor does it clog with bone wax or bone dust. It is constructed of hardened tool steel capable of withstanding several months of hard wear without resharpening. It may be sterilized in the usual ways. Fig. 1 shows the construction of the instrument as viewed from several angles.†

REFERENCES


* The flat circular uncut discs are supplied by Johnson & Johnson, New Brunswick, N. J.
† The burr was made for the writer by the Machine Shop, Temple University Medical School, under the direction of Mr. Davis.