A novel method to determine the natural course of unruptured brain arteriovenous malformations without the need for follow-up information

Bengt Karlsson, MD, PhD,1 Arne V. Johansson, PhD,2 Huai-Che Yang, MD,3 Hidefumi Jokura, MD,4 Masaaki Yamamoto, MD,5 Roberto Martinez-Álvarez, MD,6 Jun Kawagishi, MD,4 Wan-Yuo Guo, MD, PhD,9 Guus Beute, MD,7 David H. C. Pan, MD,3 Wen-Yuh Chung, MD,3 Michael Söderman MD, PhD,6 Hitoshi Aiyama, MD,7 and Tseng Tsai Yeo, MBBS, FRACS1

1Division of Neurosurgery, Department of Surgery, National University Hospital, Singapore; 2Department of Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden; Departments of 3Neurosurgery and 9Radiology, Veterans General Hospital, Taipei, Taiwan; 4Jiro Suzuki Memorial Gamma House, Furukawa Seiryó Hospital, Osaki, Japan; 5Katsuta Hospital Mito GammaHouse, Ibaraki, Japan; 4Ruber International Hospital, Madrid, Spain; 6ETZ Elizabeth, Tilburg, The Netherlands; and 8Karolinska Hospital, Stockholm, Sweden

OBJECTIVE There is a strong clinical need to accurately determine the average annual hemorrhage risk in unruptured brain arteriovenous malformations (AVMs). This need motivated the present initiative to use data from a uniquely large patient population and design a novel methodology to achieve a risk determination with unprecedented accuracy. The authors also aimed to determine the impact of sex, pregnancy, AVM volume, and location on the risk for AVM rupture.

METHODS The present study does not consider any specific management of the AVMs, but only uses the age distribution for the first hemorrhage, the shape of which becomes universal for a sufficiently large set of patients. For this purpose, the authors collected observations, including age at first hemorrhage and AVM size and location, in 3425 patients. The average annual risk for hemorrhage could then be determined from the simple relation that the number of patients with their first hemorrhage at a specific age equals the risk for hemorrhage times the number of patients at risk at that age. For a subset of the patients, the information regarding occurrence of AVM hemorrhage after treatment of the first hemorrhage was used for further analysis of the influence on risk from AVM location and pregnancy.

RESULTS The age distribution for the first AVM hemorrhage was used to determine the average annual risk for hemorrhage in unruptured AVMs at adult ages (25–60 years). It was concluded to be 3.1% ± 0.2% and unrelated to AVM volume but influenced by its location, with the highest risk for centrally located AVMs. The hemorrhage risk was found to be significantly higher for females in their fertile years.

CONCLUSIONS The present methodology allowed the authors to determine the average annual risk for the first AVM hemorrhage at 3.1% ± 0.2% without the need for individual patient follow-up. This methodology has potential also for other similar types of investigations. The conclusion that centrally located AVMs carry a higher risk was confirmed by follow-up information. Follow-up information was also used to conclude that pregnancy causes a substantially greater AVM hemorrhage risk. The age distribution for AVM hemorrhage is incompatible with AVMs present at birth having the same hemorrhage risk as AVMs in adults. Plausibly, they instead develop in the early years of life, possibly with a lower hemorrhage risk during that time period.

https://thejns.org/doi/abs/10.3171/2018.7.GKS181278

KEYWORDS AVM; hemorrhage; risk; vascular disorders; stereotactic radiosurgery

ABBREVIATIONS AVM = arteriovenous malformation; GKS = Gamma Knife surgery.

INCLUDE WHEN CITING DOI: 10.3171/2018.7.GKS181278.
Many studies estimating the annual risk for hemorrhage of unruptured arteriovenous malformations (AVMs) have been published. With few exceptions, the studies are retrospective and analyze patients in whom, for various reasons, the AVM has been left untreated for longer or shorter periods of time. In most reports, the risk of rupture varies between 2% and 4%, but a rate exceeding 30% was reported for selected ruptured AVMs. Several factors have been suggested to influence the risk for hemorrhage, such as AVM volume and location, angioarchitecture, history of earlier rupture, drainage pattern, venous stenosis, aneurysm, pregnancy, age, sex, and observation time.

More recently, the hypothesis that previously unruptured AVMs carry a lower risk for rupture than those that have hemorrhaged has been highlighted. This led to the ARUBA (A Randomized Trial of Unruptured Brain Arteriovenous Malformations) study, concluding that the annual hemorrhage risk for unruptured AVMs is, within a likelihood of 95%, between 0.9% and 4.5%, with an average value given as 2.2%. The ARUBA study highlighted the need for a more accurate estimate of the risk for hemorrhage in AVMs to enable proper counseling of AVM patients.

The variation in the estimation of the annual risk for AVM rupture suggests that the methodology used is suboptimal. As the incidence of hemorrhages is low, a large patient population is required to be monitored for many years to result in accurate risk estimation. Fatal hemorrhages in patients with earlier undiagnosed AVMs are likely to be underreported. The observation that the risk for hemorrhage decreases with time, also for untreated and unruptured AVMs, is more likely explained by methodological study errors than by changes in the AVMs.

In 1997, we introduced a novel method to define the risk for AVM hemorrhage, hereafter referred to as KLJS. The basis of this method was to use the age distribution for the first AVM hemorrhage in a large patient population. The major advantage with this method is that follow-up data are not needed. AVMs were assumed to be congenital, which was the prevailing opinion at that time. The primary conclusion was that the risk for hemorrhage increases with age; for example, that the annual risk for rupture is 6% for a 40-year-old and 8% for a 50-year-old individual. This result is not compatible with our clinical experience.

As a consequence, we need to challenge the opinion that AVMs are congenital, as Lasjaunias did in 1997. Petridis et al. analyzed data from all patients admitted in Germany during the years 2009–2013 and concluded that the data contradict the assumption that AVMs are congenital. The fact that de novo AVMs not infrequently appear after complete removal or obliteration of AVMs in children shows that at least some AVMs develop in the earlier years of life. The diagnosis of intrauterine AVMs is extremely rare, and 50%–80% of them present with hemorrhage, which contradicts the prerequisites of AVMs being congenital and initially benign to be compatible with the conclusions in the KLJS study.

The logical explanation to this is that AVMs are developmental rather than congenital and develop as long as the brain develops, i.e., until the age of around 25 years. We thus decided to perform a study hypothesizing that it is possible to estimate the annual risk for AVM hemorrhage in earlier nonruptured AVMs by using the same type of methodology in a larger number of patients and discarding the assumption that AVMs are congenital.

Methods

The concept in this study is that it is possible to assess the risk for the initial hemorrhage in nonruptured AVMs by analyzing the age distribution of the first hemorrhage. Note that the present study does not consider any specific treatment of the AVMs, but only uses the data of the patient’s age at first hemorrhage. The assumption that AVMs are congenital was discarded in our analysis. The first part of the study was to show that the age distribution for the first AVM hemorrhage is universal when normalized by the total number of patients observed, if the patient population is large enough. We assumed as a first approximation that the average risk is age independent. The study design enabled us to exclude the potential flaws with possible selection bias and incomplete follow-up data inherent with conventional studies.

The study was based on “old” data from the 1479 patients included in the KLJS study and “new” data from the following hospitals participating in the study: Taipei Veterans General Hospital; Jiro Suzuki Memorial Gamma House, Furukawa Seiryo Hospital; Ruber International Hospital, Madrid; Katsuta Hospital Mito Gamma House, Ibaraki; ETZ Elizabeth, Tilburg; and National University Hospital, Singapore. IRB approval was obtained from each of the participating institutions. In addition, data from one of the authors’ personal series (B.K.) was added to the “new” data. The data were anonymized before being added to the study. One of the authors (B.K.) visited all institutions to ensure the accuracy of the collected data.

Data regarding patient sex and the age at the first hemorrhage were collected for 1803 male and 1622 female patients, giving a total of 3425 patients. All patients experienced their hemorrhage before any of the AVMs were treated. All patients had imaging evidence of a hemorrhage and were referred to a neurosurgical clinic. Information about the AVM location was available for 3311 patients, being central in 1258, cerebellar in 345, and peripheral in 1708 patients. A central location was defined as an AVM located in the brainstem, thalamus, basal ganglia, or intrar periventricular region. All other supratentorial lesions were defined as peripheral. The AVM volume, defined as the AVM nidus only, thus excluding the feeders and draining veins, was known in 2880 patients, with 1632 AVMs ≤ 2 cm³ and 312 ≥ 10 cm³. The first treatment for the AVM was Gamma Knife surgery (GKS) in 2322 patients, while 1103 were initially managed with other treatment modalities, including no treatment.

Annual Risk of Hemorrhage

The age distribution of incidence of AVM hemorrhage in the patient material considered here is denoted as n(x), representing the number of hemorrhages per year at age x. In the following analysis, we will use the moving 5-year

\[\text{Annual Risk of Hemorrhage} = \frac{n(x)}{x}\]
average representation of the data. One should keep in mind that we can consider the distribution shape to be independent of the number of patients for a large enough population.

We will consider a virtual population, $N(x)$, with a distribution over age, x, that we seek to determine from the information contained in the age distribution of the observed AVM hemorrhages. In this procedure, we used the assumptions of an age-independent annual risk in conjunction with the above conclusion of noncongenital AVMs, implying that the population is empty at age zero, i.e., $N(0) = 0$. Thus, $N(x)$ will increase up to some age (that will follow from the analysis) and thereafter be constant, except for some decrease at older ages, which can be expected from deaths due to non–AVM-related factors. At any given age, x, the number of observed hemorrhages, $n(x)$, should be equal to the annual risk, r, multiplied by the number of AVMs at risk for their first hemorrhage. The annual risk is here assumed to be independent of age. The number of AVMs at risk equals the number of AVMs developed up to year x (i.e., $N(x)$) minus the number of AVMs that hemorrhaged at earlier ages, $M(x)$. Thus,

\[
M(x) = \sum_{x = 0}^{x-1} n(x) \quad [\text{eq. 1}]
\]

and

\[
n(x) = r \times (N(x) - M(x)) \quad [\text{eq. 2}]
\]

Since $n(x)$ is known from our data, and thereby also $M(x)$, we can now use the requirement of constant level of $N(x)$ at adult ages to determine the value of the age-independent annual risk, with the following simple procedure:

1) set an assumed value for the risk r
2) use the relation [eq. 2] to obtain $N(x)$.

If the curve $N(x)$ is flat for adult ages, x, we have guessed the correct value. Otherwise, we repeat steps 1 and 2 until we obtain a curve $N(x)$ that exhibits a constant level at adult ages. $N(x_{\text{max}})$ should be equal to the total number of patients in the observed population.

Results

Universal Shape of the Age Distribution Curve

The “old” and “new” patient data for the age distribution of the first hemorrhage are compared in Fig. 1. The age distributions were found to be similar for the 2 data sets as well as when comparing patients initially treated with GKS to those initially treated with other methods. The agreement between the curves illustrates the universality of the shape of the age distribution and its independence of the specifics of the patient population. Another support for the universality of the curve is that a similar age distribution was reported earlier.5

Comparing the age distributions between male and female patients (Fig. 2), a significant difference was found, with a substantially higher relative incidence of hemorrhage for females between 15 and 35 years old (see below). This represents a greater risk for hemorrhage for females in their fertile years. An age-independent annual risk for hemorrhage is hence not compatible with the age distribution for females. We therefore primarily used the age distribution for male patients when determining the annual risk for AVM hemorrhage (Fig. 3).

Annual Risk for Hemorrhage

The curves in Fig. 4 represent assumed values of the annual risk for hemorrhage of 2%, 3%, and 4%. We see that a value close to 3% is needed in order to fulfill the requirement of a constant level of N at adult age. By using linear regression for the age interval 25–60 years, the best fit was found to be an annual risk of 3.1% (Fig. 5). It can be concluded that a reasonable estimate of the uncertainty in the determined risk is less than ± 0.2%.

Note that this average annual risk means that, on average, about two-thirds of all patients with an unruptured AVM at the age of 25 years will have experienced a hemorrhage before the age of 60 years. Conversely, about one-
third of the same population will reach the age of 60 years without AVM hemorrhage, despite the annual risk of 3.1%.

So, how can we determine the risk for hemorrhage without studying patients with unruptured AVMs? The answer is that the peak and subsequent slope of the hemorrhage age distribution curve (Fig. 1) is directly related to the magnitude of the risk for hemorrhage. The higher the risk, the fewer unruptured AVMs that will remain at older ages. Hence, for greater risk, the age distribution curve will exhibit a higher peak and a steeper slope.

As expected (see Methods), the constant level of n(x) at adult ages 25–60 years is higher than the total number (N(x max) = 1803) of observed AVMs that hemorrhaged in the male population studied.

Effect of AVM Parameters on the Risk for Hemorrhage

Our study is based on the assumption of an age-independent annual risk for AVM hemorrhage. As shown above, this is not correct for the female patient population. When dividing the male patient population into subgroups, the low number of patients gives a substantially higher uncertainty in the risk determination. However, the possible influence of AVM volume and location should be sex independent. We can therefore use information from both male and female patients in order to get a larger population and thereby a lower uncertainty. The risk found will be somewhat too high, but the relation between the risks for different groups should be accurate. To assess the magnitude of the error introduced by analyzing the entire patient population, we note that the (flawed) annual risk that results when using data from all patients in the method described above is 4%. This finding is compatible with the findings of Ondra et al.25

Factors Affecting the Risk for Hemorrhage

As seen in Fig. 4, N(x) increases up to 25 years and decreases after 60 years of age. As a consequence, we decided to use linear regressions for this age interval for the following analyses.

AVM Volume and the Risk for Hemorrhage

The AVM population was divided in 2 different ways. First, the AVMs were divided into 2 groups: AVM volumes of ≤ 2 cm³ or > 2 cm³. The subgroup of AVMs ≥ 10 cm³ was analyzed separately. The linear regression with a 3% estimated annual risk for the male population fits well in all categories, i.e., results in horizontal lines between 26 and 60 years of age. The same was found when using 4% for the total patient population. This suggests that the impact of AVM volume on the risk for hemorrhage is small.

AVM Location and the Risk for Hemorrhage

The best fits with a horizontal linear regression for males were found for a 3% risk for peripherally located AVMs, a 4% risk for central ones, and a 1% risk for cerebellar AVMs. The corresponding rates were 3%, 5%, and
A fundamental assumption for the present analysis is that the risk of hemorrhage is age independent in adult patients. The results from this study support the validity of this assumption for ages up to about 60 years. The assumption may be incorrect for ages above 60 years, where AVM-unrelated deaths affect the results. In addition, an intracerebral hemorrhage in an older patient is less likely to be investigated with angiography and thus AVMs may be underdiagnosed in elderly patients.

One should note that the assumption that AVMs present at birth carry the same risk for hemorrhage as AVMs in adults is incompatible with our data. We cannot conclude whether AVMs are congenital and develop in early years of life or if they are not congenital and develop after birth. The only difference between these 2 scenarios is that the development starts before or after birth. A plausible consequence of our findings is that AVMs found in pediatric patients are likely to be immature compared with AVMs in adults. This was investigated by comparing the hemorrhage rate the first 2 years after GKS in 560 pediatric and 2319 adult patients. The 2-year hemorrhage rate was found to be 2.3% for pediatric and 4.5% for adult patients (p = 0.02). The consequence of such a lowered risk for the results presented in Fig. 4 would only be a more rapid increase in the AVM population N(x) development at young ages, while leaving the results for adult ages unchanged.

The 3.1% risk determined in this study should be interpreted as an average value representative for a large AVM patient population. There are natural variations between different individuals and subgroups, and possibly variation in time for individual patients. However, the average risk for a large patient population will be independent of such specific variations. The observed change in risk following a hemorrhage is not relevant for this study, as it addresses the risk for the first hemorrhage only.

It has been suggested in the literature that the risk for hemorrhage is highest during the first years after becoming symptomatic and that it decreases continuously thereafter. A direct consequence of this hypothesis is that the average risk for hemorrhage must decrease with age. This is not compatible with the age distribution in our patient population. More than 20% of the AVMs would have to develop after the age of 25 years for our data to be compatible with an assumption of a linear decrease in risk from 3% to 1.5% between 25 and 60 years. Decreases from 4% to 2% and from 2% to 1% yielded similar results.

It is highly unlikely that a significant portion of AVMs develop during adulthood. De novo AVMs in patients older than 25 years are so rare that they are published as case reports. Shi et al. and Paebney et al. suggested that AVM development in adult patients may be triggered by ischemic and/or traumatic events. The number of de novo AVMs in adults is consequently so low that it does not affect the conclusions made in this study. Hence, we must conclude that the assumption of an annual hemorrhage risk that decreases after becoming symptomatic very likely is incorrect.

Conclusions

The large patient population studied here was shown to give an essentially universal shape of the age distribution for the occurrence of the first AVM hemorrhage. From this age distribution, we could conclude that the average annual risk for hemorrhage in unruptured AVMs in adult patients is around 3.1% with an uncertainty of less than ± 0.2%, without the need for follow-up information. The observed age distribution for AVM hemorrhage is incompatible with AVMs present at birth having the same hemorrhage risk as AVMs in adults. Plausibly, they instead develop in the early years of life, possibly with a lower hemorrhage risk during that time period.
The risk for hemorrhage was found to be essentially un-
related to AVM volume. However, AVM location affects
the risk, being highest for centrally located AVMs. The
risk for AVM rupture is significantly increased for females
in their fertile years, which was concluded to be due to
pregnancy. This conclusion could be reached by comple-
menting the analysis with a follow-up study of males and
nonpregnant females over a 2-year period post-GKS.

Acknowledgments
We are deeply indebted to the late Ladislau Steiner, MD, PhD,
who generously shared his data with B.K. during his work on his
thesis.
The work was carried out with internal funding at the respective
site. The authors were free of any external influence in the analysis
of the data and the writing of the manuscript. The decision to sub-
mit the paper for publication was made jointly by the authors. The
authoring Y: Symptomatic de novo arteriovenous malformation appearing 17 years after the
resection of two other arteriovenous malformations in child-
2. Brown RD Jr, Wiebers DO, Forbes G, O’Fallon WM, Piep-
68:352–357, 1988
4. Can A, Gross BA, Du R: The natural history of cerebral arterio-
enous malformations. Handb Clin Neurol 143:15–24, 2017
5. Crawford PM, West CR, Chadwick DW, Shaw MD: Arterio-
enous malformations of the brain: natural history in unoper-
6. Eguchi S, Aihara Y, Yamaguchi K, Okada Y: Limitations of
ultrasound and magnetic resonance imaging in prenatal diagnosis of congenital cerebral arteriovenous malform-
ations with hemorhagic onset. J Neurosurg Pediatr
10:154–158, 2012
7. Friedman JA, Pollock BE, Nichols DA: Development of a ce-
93:1058–1061, 2000
8. Fults D, Kelly DL Jr: Natural history of arteriovenous mal-
formations of the brain: a clinical study. Neurosurgery
15:658–662, 1984
84:879–882, 1996
10. Graf CJ, Perret GE, Torner JC: Bleeding from cerebral arterio-
enous malformations as part of their natural history. J Neurosurg
58:331–337, 1983
11. Halim AX, Johnston SC, Singh V, McCulloch CE, Bennet
brain within a defined population. Stroke 35:1697–1702,
2004
Laakso A: Natural history of brain arteriovenous malforma-
H, et al: Natural course of unoperated intracranial arterio-
venous malformations: study of 50 cases. J Neurosurg
71:805–809, 1989
14. Kader A, Goodrich JT, Sonstein WJ, Stein BM, Carmel PW,
Michelson WJ: Recurrent cerebral arteriovenous malforma-
tions after negative postoperative angiograms. J Neurosurg
85:14–18, 1996
for the first hemorrhage from untreated cerebral arterio-
enous malformations. Minim Invasive Neurosurg
40:40–46, 1997
WL: Untreated brain arteriovenous malformation: patient-
level meta-analysis of hemorrhage predictors. Neurology
83:590–597, 2014
17. Kim H, Sidney S, McCulloch CE, Poon KY, Singh V, John-
of intracranial hemorrhage in brain arteriovenous malforma-
18. Lasjaunias P: A revised concept of the congenital nature of
cerebral arteriovenous malformations. Interv Neuroradiol
19. Lindquist M, Karlsson B, Guo WY, Kihlström L, Lippitz
B, Yamamoto M: Angiographic long-term follow-up data for
arteriovenous malformations previously proven to be
obliterated after gamma knife radiosurgery. Neurosurgery
46:803–810, 2000
20. Mast H, Young WL, Koennecke HC, Sciacca RR, Osipov A,
Pile-Spellman J, et al: Risk of spontaneous haemorrhage af-
der diagnosis of cerebral arteriovenous malformation. Lancet
21. Miyasaka Y, Nakahara K, Takagi H, Hagiwara H: Develop-
ment of multiple cerebral arteriovenous malformations
98:190–193, 2003
22. Mizutani T, Tanaka H, Aruga T: Total recanalization of a
spontaneously thrombosed arteriovenous malformation. Case report. J Neurosurg
82:506–508, 1995
JR, et al: Medical management with or without interventional therapy for unruptured brain arteriovenous malformations
(ARUBA): a multicentre, non-blinded, randomised trial. Lancet
363:614–621, 2014
parenchymal AVMs congenital lesions? Neurosurgery Focus
history of symptomatic arteriovenous malformations of the
26. O’Shaughnessy BA, DiPatri AJ Jr, Parkinson RJ, Bajter HH:
Development of de novo cerebral arteriovenous malfor-
mation in a child with sickle cell disease and moyamoya arte-
riopathy. Case report. J Neurosurg
102 (2 Suppl):238–243, 2005
27. Pabaney AH, Rammo RA, Tahir RA, Seyfried D: Develop-
ment of de novo arteriovenous malformation following ischemic stroke: case report and review of current literature. World Neurosurg
96:608.e5–608.e12, 2016
28. Petridis AK, Fischer I, Cornelius JF, Kamp MA, Ringel F,
Tortora A, et al: Demographic distribution of hospital admis-
dions for brain arteriovenous malformations in Germany—
29. Shi S, Gupta R, Moore JM, Griessenauer CJ, Adeeb N, Motie-
128:506–510, 2018

References
30. Shidoh S, Kobayashi M, Akaji K, Kano T, Tanizaki Y, Mi-
hara B: De novo arteriovenous malformation after aneurysm
clipping. NMC Case Rep J 4:89–92, 2017
brain arteriovenous malformation. Neurology 66:1350–1355,
2006
32. Yamada S, Takagi Y, Nozaki K, Kikuta K, Hashimoto N:
Risk factors for subsequent hemorrhage in patients with ce-
972, 2007

Disclosures
Dr. Söderman: consultant for J&J and Archer Research; patent
holder with Neurvana; and long-term scientific collaboration with
Philips Healthcare.

Author Contributions
Conception and design: Johansson, Karlsson. Acquisition of data:
Karlsson, Yang, Jokura, Yamamoto, Kawagishi, Guo, Beute, Pan,
Chung, Söderman, Aiyama, Yeo. Analysis and interpretation of
data: Johansson, Karlsson. Drafting the article: Johansson, Karl-
sson. Critically revising the article: all authors. Reviewed submit-
ted version of manuscript: all authors. Approved the final version
of the manuscript on behalf of all authors: Johansson. Statistical
analysis: Johansson, Karlsson.

Supplemental Information
Previous Presentations
Portions of this work were presented at the 19th Leksell Gamma
Knife Society Meeting, Dubai, United Arab Emirates, March 4–8,
2018.

Correspondence
Arne V. Johansson: KTH Royal Institute of Technology, Stock-
holm, Sweden. viktor@kth.se.