Urokinase, a promising candidate for fibrinolytic therapy for intracerebral hemorrhage

Qiang Tan, MD, Qianwei Chen, MD, Yin Niu, MD, Zhou Feng, MD, Lin Li, MD, Yihao Tao, MD, Jun Tang, MD, Liming Yang, MD, Jing Guo, MD, Hua Feng, MD, PhD, Gang Zhu, MD, PhD, and Zhi Chen, MD, PhD

Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and Department of Neurosurgery, 211st Hospital of PLA, Harbin, People’s Republic of China

OBJECTIVE Intracerebral hemorrhage (ICH) is associated with a high rate of mortality and severe disability, while fibrinolysis for ICH evacuation is a possible treatment. However, reported adverse effects can counteract the benefits of fibrinolysis and limit the use of tissue-type plasminogen activator (tPA). Identifying appropriate fibrinolytics is still needed. Therefore, the authors here compared the use of urokinase-type plasminogen activator (uPA), an alternate thrombolytic, with that of tPA in a preclinical study.

METHODS Intracerebral hemorrhage was induced in adult male Sprague-Dawley rats by injecting autologous blood into the caudate, followed by intraclot fibrinolysis without drainage. Rats were randomized to receive uPA, tPA, or saline within the clot. Hematoma and perihematomal edema, brain water content, Evans blue fluorescence and neurological scores, matrix metalloproteinases (MMPs), MMP mRNA, blood-brain barrier (BBB) tight junction proteins, and nuclear factor–κB (NF-κB) activation were measured to evaluate the effects of these 2 drugs in ICH.

RESULTS In comparison with tPA, uPA better ameliorated brain edema and promoted an improved outcome after ICH. In addition, uPA therapy more effectively upregulated BBB tight junction protein expression, which was partly attributed to the different effects of uPA and tPA on the regulation of MMPs and its related mRNA expression following ICH.

CONCLUSIONS This study provided evidence supporting the use of uPA for fibrinolytic therapy after ICH. Large animal experiments and clinical trials are required to further explore the efficacy and safety of uPA in ICH fibrinolysis.

http://thejns.org/doi/abs/10.3171/2016.1.JNS152287

KEY WORDS intracerebral hemorrhage; urokinase-type plasminogen activator; tissue-type plasminogen activator; fibrinolytic therapy; perihematomal edema; vascular disorders

Abbreviations: BBB = blood-brain barrier; EB = Evans blue; GAPDH = glyceraldehyde 3-phosphate dehydrogenase; ICH = intracerebral hemorrhage; IVH = intraventricular hemorrhage; MISTIE = minimally invasive surgery plus rtPA for ICH evacuation; MMP = matrix metalloproteinase; NF-κB = nuclear factor–κB; PHE = perihematomal edema; RBC = red blood cell; RT-PCR = real-time polymerase chain reaction; tPA = tissue-type plasminogen activator; uPA = urokinase-type plasminogen activator; vWF = von Willebrand factor.

Include When Citing: Published online April 22, 2016; DOI: 10.3171/2016.1.JNS152287.

* Drs. Tan and Q. Chen contributed equally to this work.

©AANS, 2017

Unauthenticated | Downloaded 09/21/23 02:40 AM UTC
tial effect of these 2 agents for fibrinolytic therapy follow-
ning ICH. We hypothesized that uPA could provide greater
benefits than tPA when used for ICH fibrinolysis. Thus, in
the present study, we decided to compare the efficacy of
these 2 fibrinolytics in an ICH model in rats.

Methods

Animals

One hundred thirty adult male Sprague-Dawley rats
weighing 250–350 g were used in this study (Third Mili-
tary Medical University). Animals were housed under con-
trolled, pathogen-free conditions with free access to pel-
let food and water. Surgical procedures were performed
aseptically, and standard microsurgical techniques were
used with an operating microscope. At the study end point,
while under deep anesthesia, animals were killed using an
overdose of intraperitoneal pentobarbital. All efforts were
made to minimize suffering and animal numbers, accord-
ing to the Guide for the Care and Use of Laboratory Ani-
mal; and the study protocol was approved by the Animal
Care and Use Committee at the Third Military Medical
University.

Surgical Procedures

To induce ICH, animals were anesthetized with pento-
obarbital (40 mg/kg intraperitoneal), and the right femoral
artery was catheterized to monitor arterial blood pressure,
blood pH, PaO₂, PaCO₂, and glucose levels 1 hour before
and 6 hours after ICH (Table 1). A feedback-control-
ted heating pad was used to maintain body tempera-
ture at 37°C. A cranial bur hole (1 mm) was drilled, and
a 29-gauge needle was inserted stereotactically into the
right caudate nucleus (coordinates: 0.2 mm anterior, 5.5
mm ventral, and 3.5 mm lateral to the bregma). In total,
100 μl of autologous arterial blood was infused at a rate of
10 μl/minute by using a microinfusion pump in each rat.
The sham groups required only a needle injection into the
right caudate nucleus.

Experimental Groups and Fibrinolytic Therapy

There were 2 parts to this study. First, 70 rats were
randomly divided into 5 groups of 14 rats each: sham,
ICH, ICH+saline, ICH+tPA, and ICH+uPA. Thirty min-
utes after hematoma placement, 2 μl of saline, 2 μl of tPA
(10 μg/μl, Actilyse, Boehringer Ingelheim International),
or 2 μl of uPA (100 IU/μl, urokinase for injection, No.
H44020647, approved by state, Livzon Pharmaceutical
Group Co.) was injected through an intracerebral catheter
with a microinfusion pump, into the core of the hematoma.
In the present study, the dose regimen of tPA (20 μg) was
used, as described in a previous study28 of a Wistar rat
model of ICH in which Wistar rats received a 50-μl blood
injection and a subsequent 12-μg recombinant tPA (rtPA)
treatment. For uPA, no dose study in rat ICH fibrinolysis
has been reported as yet. In a preclinical study of intra-
cerebral hemorrhage (IVH) fibrinolysis, Gaberel et al.
reviewed the relevant literature and proposed that 10,000
IU of uPA is equivalent to 1 mg of tPA.14 Thus, 200 IU of
uPA was selected as an amount comparable to 20 μg of
tPA in our study. Furthermore, according to the proportion
between hematoma size and drug dosage, the established
doze of tPA and uPA are equivalent to the dosage in ICH
patients.8,23,26 To avoid additional injury to the normal peri-
hematoma brain tissue during intraclot drainage, we used
fibrinolytic injection alone rather than fibrinolytic injection
with intraclot drainage. The bur hole was sealed with bone
wax, and the skin incision was closed with sutures after the
needle was removed. Animals were allowed to recover in
the conditions described above until the testing phase. All
rats were killed on Day 3 after ICH for brain water content
(8 rats/group) and Evans blue (EB) fluorescence (6 rats/
group) after performing MRI and behavioral tests.

Second, 54 rats were randomly divided into 3 groups
of 18 rats each: ICH+saline, ICH+tPA, or ICH+uPA. After
fibrinolysis, as described above, all rats were killed on Day
3 after ICH for Western blot (9 rats/group; 4 for matrix me-
talloproteinases [MMPs] and tight junction protein ZO-1
and 5 for nuclear factor [NF]-κB, real-time polymerase
chain reaction (RT-PCR; 4 rats/group) assay, and immuno-
fluorescence (5 rats/group). A total of 6 rats died within 24
hours of the injection of autologous arterial blood.

Magnetic Resonance Imaging and Volume Measurement

Rats were anesthetized with a 2% isoflurane/air mix-
ture throughout the MRI examination performed on Day
3 after ICH. Magnetic resonance imaging was performed in
a 7.0-T Varian MR scanner (Bruker Corp.) with a T2
fast spin-echo sequence using an FOV 35 × 35 mm and 17
coronal slices (1.0-mm thickness). Volumes were calculat-
ed as previously described.6,10 Hematoma and PHE were
outlined, and the areas were measured. Volumes were as-
essed by calculating the areas of all slices and multiply-
ing by the section thickness. All image analyses were per-
formed by 2 observers blinded to the rat treatment factors
by using ImageJ (National Institutes of Health).

Brain Water Content

Three days after ICH and MRI, rats were killed. Brains
were removed and divided into 2 hemispheres and the
cerebellum, as previously described.11 The wet weights
were determined immediately. Then, the brain sections
were dried at 100°C for 24 hours before obtaining the dry
weights. The percentage of water content was calculated
as follows: (weight − dry weight)/weight × 100%. The
percentage of water content was calculated by 2 ob-
servers blinded to the rat treatment factors.

Evans Blue Fluorescence

Vascular permeability was determined by measuring
the fluorescence intensity of EB dye (Aladdin US) extravasation 3 days after blood infusion. Rats were injected with 2% EB dye (5 ml/kg) via the tail vein 60 minutes before perfusion and brain removal, as previously described. Then, the brains were removed in preparation for coronal brain sections. Red autofluorescence of EB was observed on the slides, as previously described. The mean red autofluorescence of EB was evaluated by 2 observers blinded to rat treatment factors.

Corner Turn Test

The corner turn test was performed 3 days after ICH and before MRI, as described previously. Briefly, the rat was allowed to proceed into a corner, whose angle was 30°. To exit the corner, the rat could turn to either the left or the right, and that direction was recorded. The test was repeated 10–15 times, with at least 30 seconds between trials, and the percentage of right turns was calculated. The mean neurological score was evaluated by 2 blinded observers.

Forelimb Placing Test

The forelimb-placing test was performed 3 days after ICH and before MRI, as described previously. Briefly, each rat was tested 10 times for each forelimb, and the percentage of trials in which the rat placed the appropriate forelimb on the edge of the countertop in response to vibrissae stimulation was determined. Testers were highly experienced and blinded to the condition of the animal. The mean neurological score was evaluated by 2 blinded observers.

Real-Time PCR

The PCR was performed and analyzed, as previously described. For RT-PCR MMP gene expression analysis, rats (4/group) were sacrificed by decapitation 3 days after ICH. The brains were then dissected 2 mm anteriorly and 2 mm posteriorly to the needle entry site (easily identifiable on the brain surface) and were divided into separate hemispheres along the midline. Next, the striatum on each side of the brain was separated from the surrounding white matter and cortex and was used for RNA extraction. In the ICH animals, this area included most of the hematoma and a surrounding region of striatal tissue. Primers were designed with the Primer3 Output program (http://primer3.ut.ee; Table 2). Total RNA was extracted using TRIzol reagent (Invitrogen). A positive standard curve for each primer was obtained using a serially diluted cDNA (complementary DNA) sample mixture. Gene expression was quantified with standard samples and normalized with glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The data are expressed as normalized mRNA expression (fold mRNA [messenger RNA] increase). All data analyses were performed in a blinded manner by 2 observers.

Western Blot Analysis

Western blot analysis was performed, as previously described. The brains were perfused with saline before decapitation on Day 3 after injection. The perihematomal brain tissue (4-mm-thick brain tissue around the hematoma) was sampled. The primary antibodies included anti–MMP-2 (1:1000, CST), anti–MMP-12 (1:1000, Abcam), anti–ZO-1 (1:500, Santa Cruz), anti–NF-κB p65 (1:1000, CST), anti–phospho–NF-κB p65 (1:1000, CST), anti–GAPDH (1:1000, Santa Cruz), anti–β-actin (1:1000, Beyotime). The relative densities of the bands were analyzed using NIH ImageJ software. All data analyses were performed in a blinded manner by 2 observers.

Immunofluorescence

Immunofluorescence staining of brain tissue was performed on fixed frozen sections, as previously described. Rats were anesthetized with pentobarbital (100 mg/kg intraperitoneal) and perfused with 4% paraformaldehyde in 0.1 mol/L phosphate-buffered saline (pH 7.4) on Day 3 after ICH. The brains were removed and kept in 4% paraformaldehyde for 4–6 hours and then immersed in 30% sucrose for 3–4 days at 4°C. The brains were embedded in an optimal cutting temperature compound (Sakura Finetek USA), and 18-mm-thick slices were cut using a cryostat. The following primary antibodies were used: goat anti–ZO-1 (1:200, Santa Cruz), mouse anti–von Willebrand factor (vWF; 1:200, Santa Cruz), and mouse anti–claudin-5 (1:200, Invitrogen). Appropriate secondary antibodies were incubated with the specimens for 3 hours at 37°C. Immunofluorescence was examined using a confocal fluorescence microscope (LSM780, Zeiss).

Statistical Analysis

Sample size estimations were made by power analysis using a Type I error rate of 0.05 and a power of 0.8 on a 2-sided test. Results are expressed as the means ± standard deviation. For each type of experiment, data were obtained from at least 3 independent measurements. Statistical analysis of the results was conducted using a 1-way ANOVA, followed by the least significant difference test or Newman-Keuls test. Differences were considered significant at p < 0.05. All data were strictly analyzed in a blinded manner by 2 observers.

Results

Effect of tPA and uPA on Hematoma Resolution and Brain Edema Following ICH

Three days after ICH, although both tPA and uPA treat-
ment reduced the volumes of PHE (p < 0.01 vs vehicle; Fig. 1A and B) and hematoma (p < 0.05 vs vehicle; Fig. 1C), uPA was more effective in reducing PHE (7.42 ± 3.31 vs 12.15 ± 4.64 mm³, p < 0.05 vs tPA). In addition, significantly decreased brain water content in the ipsilateral hemisphere was observed in the uPA group (79.84 ± 0.41 vs 80.89 ± 0.68 mm³, p < 0.05 vs vehicle; Fig. 1D) rather than the tPA group (p > 0.05 vs vehicle).

Effect of tPA and uPA on Blood-Brain Barrier Protection and Neurological Recovery After ICH

In comparison with tPA, uPA therapy more significantly attenuated blood-brain barrier (BBB) injury and promoted functional recovery on Day 3 following ICH. Quantification of perivascular EB fluorescence revealed that uPA, in comparison with tPA, more effectively prevented BBB destruction and decreased EB extravasation from the vasculature (uPA 69.34 ± 22.62 mm³ vs tPA 87.31 ± 26.78 mm³, p < 0.05; Fig. 2A and B). During the behavior tests on Day 3 post-ICH thrombolytic therapy, the tPA group had a trend toward a higher neurological score than did the vehicle group, but there was no significant difference (tPA vs vehicle, p > 0.05; Fig. 2C and D); the uPA group had a lower corner turn score (uPA 69.82 ± 23.95 vs vehicle 90.49 ± 21.54, p < 0.05) and higher forelimb placing score (uPA 49.24 ± 28.17 vs vehicle 17.13 ± 13.80, p < 0.05) than did the control groups.

Effect of tPA and uPA on MMP and BBB Tight Junction Protein Level Regulation After ICH

The uPA therapy more effectively upregulated BBB tight junction protein expression than did tPA, which was partly attributed to the different effects of uPA and tPA on the regulation of MMPs and related mRNA expression after ICH. As shown in Fig. 3A, both uPA and tPA effectively decreased the MMP-12 mRNA expression (p < 0.05 vs vehicle) on Day 3 after ICH. However, only uPA significantly reduced the MMP-2 mRNA expression level (uPA 0.87 ± 0.05 vs vehicle 1.03 ± 0.11, p < 0.05). In addition, more remarkable MMP-9 mRNA expression was observed following treatment with tPA in comparison with uPA (tPA 1.03 ± 0.23 vs 0.87 ± 0.29 uPA, p < 0.05). Moreover, the corresponding Western blotting assays revealed trends in MMP expression levels similar to those in the mRNA assays (Fig. 3B). Despite the increased MMP-9 expression after ICH thrombolysis, both uPA and tPA effectively protected ZO-1 (p < 0.05 and 0.01, respectively, vs vehicle; Fig. 4A and B) and claudin-5 (p < 0.05 and 0.01, respectively, vs vehicle; Fig. 4C–E) from degeneration. In particular, uPA had a more prominent effect (p < 0.05, uPA vs tPA) in these processes.

Effect of tPA and uPA on NF-κB Pathway Activation After ICH

To study the role of tPA and uPA on NF-κB pathway activation
activation after ICH, we performed Western blot analysis for phospho-p65 and total p65 (Fig. 5A). Although there was no significant difference among vehicle, tPA therapy, and uPA therapy on the expression of p65 (vehicle 1.290 ± 0.4106, uPA 1.264 ± 0.4662, tPA 1.325 ± 0.2809, p > 0.05; Fig. 5B), we observed a significant exacerbation of phospho-p65 expression following treatment with tPA rather than with uPA or vehicle (tPA 0.7251 ± 0.2109 vs uPA 0.3991 ± 0.1054, p < 0.05; tPA vs vehicle 0.2429 ± 0.08328, p < 0.01). As phosphorylation of p65 has been seen as a key factor of the canonical NF-κB pathway,15,17 we normalized phospho-p65 to p-65 and quantified the NF-κB pathway activation by the relative densities of each band (tPA 0.5474 ± 0.1592 vs uPA 0.3158 ± 0.1054, p < 0.05; tPA vs vehicle 0.1884 ± 0.06457, p < 0.01; Fig. 5C). Together, our data demonstrated that tPA resulted in a significant exacerbation of NF-κB pathway activation for ICH fibrinolysis.

Discussion

We used a rat model of ICH, followed by intracerebral hematoma fibrinolysis with either uPA or tPA. Although both uPA and tPA displayed similar efficacy in reducing
the hematoma volume, uPA-mediated fibrinolysis alleviated PHE and promoted functional recovery better than did tPA in ICH rats.

Although hematoma evacuation can effectively reduce PHE,26 the surgical evacuation of deep hemorrhages is not always feasible, as sometimes it can require traversing a significant area of normal cerebral tissue. Thus, minimally invasive methods are essential. Minimally invasive surgery plus thrombolysis for ICH represents a minimally traumatic method of evacuating both superficial and deep hemorrhages. Over the last decade, several groups have reported significant results favoring accelerated clot thrombolysis with an acceptable safety profile.4,24,42 Recently, the minimally invasive surgery plus rtPA for ICH evacuation (MISTIE) Phase II trial tested the safety and efficacy of hematoma evacuation after ICH and demonstrated a significant reduction in hematoma volume as well as in PHE.26 In agreement with results in the aforementioned clinical trials, we also observed a significant reduction in hematoma and PHE in rat models of ICH after thrombolytic therapy in the present study. Moreover, we exposed these thrombolysis-treated animals to behavioral tests and found a remarkable recovery of motor function, which is, to our knowledge, the first time the behavioral tests have been conducted. At present, the MISTIE Phase III trial is under way to evaluate whether the reduction in hematoma size and edema translates to a reduced mortality and improved functional outcome.

During thrombolytic therapy in ICH rats in our study, without any attempts to aspirate the clot or the lysed material, as has been described elsewhere,27 the fibrinolytics injection successfully accelerated intracerebral hematoma resolution. Although relatively little is known about the mechanisms involved in hematoma resolution and how they are regulated, phagocytosis of red blood cells (RBCs) by microglia and/or infiltrating macrophages has also been suggested to have a role in resolution.40,41 In this study, thrombolitics penetrated the clot and degraded the fibrin, which may produce more room for interactions between microglia and/or infiltrating macrophages and free RBCs. Thus, the greater RBC phagocytosis by macrophages in the thrombolytic group, in comparison with the control group, may contribute to accelerated clot evacuation. Future studies will need to delineate the mechanisms involved in this phenomenon. Because enhancing the endogenous mechanisms related to hematoma resolution is an alternative strategy in ICH treatment, it can be used to overcome the brain trauma associated with surgical clot removal.19 The blood injection model used in the present study may not be the best model to assess the effects of

FIG. 3. Effect of tPA and uPA on MMP and MMP mRNA levels regulation after ICH. A: Relative normalized expression levels of MMP mRNAs in the perihematomal area on Day 3 (3d) after ICH (4 rats/group). B: Representative Western blot analysis and quantification of the relative density of the band of MMPs (4 rats/group). Results are presented as the means ± standard deviation. *p < 0.05, **p < 0.01 vs vehicle group, #p < 0.05 vs the tPA group.
fibrinolytics (especially without aspiration) on hematoma volume reduction, and other types of models are required in the future.

As noted above, many researchers have reported reduced PHE after tPA thrombolysis and aspiration either in large animal models or in humans with ICH. However, it should be noted that the adverse effects of tPA are still under debate. Preclinical studies have reported that tPA can have neurotoxic effects by inducing inflammation, disrupting the BBB, causing neuronal degeneration, and exacerbating cerebral edema. A recent meta-analysis conducted by Gaberel et al. has suggested that uPA, an alternate thrombolytic, is superior to tPA for IVH clot evacuation. Subsequently, Gaberel et al. designed a preclinical experiment to evaluate the differential impact of uPA versus tPA in a rat model of IVH and found that only uPA significantly improved functional recovery. These findings provide further evidence that uPA is more efficacious than tPA for fibrinolysis in IVH. Furthermore, an increasing number of clinical studies have proposed that uPA carries a high fibrinolytic potential without excitotoxicity, thus representing a novel, promising candidate...
Urokinase for intracerebral hemorrhage fibrinolysis

In agreement with the above publications, our results also revealed the greater efficacy of uPA, compared with tPA, in ameliorating PHE and motor function after ICH.

Claudin-5 and ZO-1 are important components of the BBB that maintain the normal function of the central nervous system. Matrix metalloproteinases are involved in the degradation of these proteins, thereby resulting in BBB disruption after ICH. In our study, we observed the elevated expression of claudin-5 and ZO-1 (Fig. 4) following treatment with uPA and tPA in comparison with vehicle, which may be partly explained as more effectively down-regulating MMP (MMP-2 and MMP-12; Fig. 3) expression in the 2 fibrinolytic groups. The EB extravasation test also demonstrated that the fibrinolytic groups protected BBB integrity and that the uPA was more effective (Fig. 2A and B). Meanwhile, we found that tPA increased MMP-9 expression more than uPA and vehicle did. Note that MMP-9 has been implicated in ICH and that tPA has been shown to activate MMPs through different mechanisms in which the NF-κB pathway has a central role. Therefore, we hypothesized that tPA and uPA could result in the differential expression of MMP-9 via the different effects on the NF-κB pathway, thereby causing a different extent of BBB disruption. Then, we evaluated this hypothesis by Western blot analysis for NF-κB activation and found that tPA showed a more remarkable activation of the NF-κB pathway than did uPA (Fig. 5) for ICH fibrinolysis, which may partly explain the reduced MMP-9 expression and improved BBB integrity in the uPA group.

In summary, both tPA and uPA protected the BBB by downregulating the MMPs, in which uPA was shown to be more efficacious by reducing activation of the NF-κB pathway. Because of limited evidence, more studies are needed to further validate the efficacy and safety of uPA for ICH fibrinolysis in larger preclinical research studies and clinical trials, particularly its comparison with tPA.

Conclusions

In the present study, we compared the use of 2 fibrinolytics, namely uPA versus tPA, in a rat ICH model. Our results showed that, despite showing a similar effect on hematoma reduction, uPA treatment better ameliorated PHE and improved the outcome following ICH than did tPA. Thus, uPA may be a promising candidate for fibrinolytic therapy for ICH.

Acknowledgments

We thank Dr. Fu Peishu from the pharmaceutical department of Southwest Hospital, Chongqing, for her diligent guidance in using the uPA and tPA during the whole study process. We are also grateful for the support from the Collaboration Innovation Center for Basic Science of China. This work was supported by Grant Nos. 81571130 (Z.C.), 81271281 (Z.C.), and 81371440 (Yang Yunfeng) from the National Natural Science Foundation of China and Grant No. 2014CB541606 (H.F.) from the National Key Basic Research Development Program (973 Program) of China.

Reference

1. Abilleira S, Montaner J, Molina CA, Monasterio J, Castillo J,
34. Thiex R, Mayfrank L, Rohde V, Gilsbach JM, Tsirka SA: The role of endogenous versus exogenous tPA on edema formation in murine ICH. Exp Neurol 189:25–32, 2004

Disclosures
The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions
Conception and design: Z Chen, Q Chen. Analysis and interpretation of data: Tan, Q Chen, Tao, Tang. Drafting the article: Tan, Q Chen. Critically revising the article: Z Chen, Tan, Niu, Tao, Yang, Guo, Zhu. Reviewed submitted version of manuscript: Z Chen, Li, H Feng, Zhu. Approved the final version of the manuscript on behalf of all authors: Z Chen. Statistical analysis: Z Feng, Li, Tang. Administrative/technical/material support: Tan, Niu, Z Feng, Yang, Guo, H Feng. Study supervision: Z Chen, H Feng.

Correspondence
Zhi Chen, Department of Neurosurgery, Southwest Hospital, Third Military Medical University, No. 30, Gaotanyan St., Chongqing, 400038, The People’s Republic of China. email: zhichen@tmmu.edu.cn.