Prior Infarcts, Reactivity, and Angiography in Moyamoya Disease (PIRAMD): a scoring system for moyamoya severity based on multimodal hemodynamic imaging

Travis R. Ladner, BA,1 Manus J. Donahue, PhD,1 Daniel F. Arteaga, BA,1 Carlos C. Faraco, PhD,1 Brent A. Roach, MD,1 L. Taylor Davis, MD,1 Lori C. Jordan, MD, PhD,1 Michael T. Froehler, MD, PhD,3 and Megan K. Strother, MD1

1Department of Radiology; 2Division of Pediatric Neurology, Department of Pediatrics; and 3Departments of Neurology and Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee

OBJECTIVE Quantification of the severity of vasculopathy and its impact on parenchymal hemodynamics is a necessary prerequisite for informing management decisions and evaluating intervention response in patients with moyamoya. The authors performed digital subtraction angiography and noninvasive structural and hemodynamic MRI, and they outline a new classification system for patients with moyamoya that they have named Prior Infarcts, Reactivity, and Angiography in Moyamoya Disease (PIRAMD).

METHODS Healthy control volunteers (n = 11; age 46 ± 12 years [mean ± SD]) and patients (n = 25; 42 ± 13.5 years) with angiographically confirmed moyamoya provided informed consent and underwent structural (T1-weighted, T2-weighted, FLAIR, MR angiography) and hemodynamic (T2*- and cerebral blood flow–weighted) 3-T MRI. Cerebrovascular reactivity (CVR) in the internal carotid artery territory was assessed using susceptibility-weighted MRI during a hypcapnic stimulus. Only hemispheres without prior revascularization were assessed. Each hemisphere was considered symptomatic if localizing signs were present on neurological examination and/or there was a history of transient ischemic attack with symptoms referable to that hemisphere. The PIRAMD factor weighting versus symptomatology was optimized using binary logistic regression and receiver operating characteristic curve analysis with bootstrapping. The PIRAMD finding was scored from 0 to 10. For each hemisphere, 1 point was assigned for prior infarct, 3 points for reduced CVR, 3 points for a modified Suzuki Score ≥ Grade II, and 3 points for flow impairment in ≥ 2 of 7 predefined vascular territories. Hemispheres were divided into 3 severity grades based on total PIRAMD score, as follows: Grade 1, 0–5 points; Grade 2, 6–9 points; and Grade 3, 10 points.

RESULTS In 28 of 46 (60.9%) hemispheres the findings met clinical symptomatic criteria. With decreased CVR, the odds ratio of having a symptomatic hemisphere was 13 (95% CI 1.1–22.6, p = 0.002). The area under the curve for individual PIRAMD factors was 0.67–0.72, and for the PIRAMD grade it was 0.845. There were 0/8 (0%), 10/18 (55.6%), and 18/20 (90%) symptomatic PIRAMD Grade 1, 2, and 3 hemispheres, respectively.

CONCLUSIONS A scoring system for total impairment is proposed that uses noninvasive MRI parameters. This scoring system correlates with symptomatology and may provide a measure of hemodynamic severity in moyamoya, which could be used for guiding management decisions and evaluating intervention response.

http://thejns.org/doi/abs/10.3171/2015.11.JNS15562

KEY WORDS moyamoya; cerebrovascular reactivity; magnetic resonance imaging; hemodynamic; vascular disorders
vention response. Current management decisions use an-
giographic data combined with MRI evidence of infarct,
along with perfusion studies based on PET or SPECT.
Studies of hemodynamic reserves are probably a useful
adjunct; however, current clinical methods require exog-
enous contrast administration and/or ionizing radiation.
Although such tools have improved our understanding of
moyamoya, these methods are suboptimal for longitudi-
nal monitoring of patients or assessing revascularization
response, because of dose restrictions.

Cerebrovascular reactivity (CVR) is a well-document-
ed and valuable surrogate marker of cerebrovascular
reserve in patients with previously identified intravascul-
lar pathology.\(^1,9–12\) In healthy parenchyma, CVR primar-
derives from a large increase in cerebral blood flow
(CBF) and cerebral blood volume (CBV) in response to
a vasostimulatory agent such as CO\(_2\) (i.e., hypercapnia).
Significantly diminished or negative changes in CVR dur-
ing hypercapnia have previously been shown to correlate
with regions affected by prior infarct and symptomatol-
gy.\(^1,26,29\) However, due to the relative novelty of hypercap-
nic CVR mapping performed using MRI compared with
more established clinical measures such as acetazolamide
SPECT, interpretation of hypercapnic CVR maps has not
been standardized.

In this study we outline an integrated, neuroimaging-
based classification system for moyamoya severity that we
have named Prior Infarcts, Reactivity, and Angiography
in Moyamoya Disease (PIRAMD). This scoring system
accounts for functional measurements of hemodynamic
impairment in moyamoya by using blood oxygen level-
dependent (BOLD) MRI-weighted CVR, and therefore
may be a comprehensive approach toward stratification of
moyamoya severity.

Methods

Patient Selection

All procedures were followed in accordance with the
ethical standards of the Vanderbilt University Institutional
Review Board. Patients presenting with angiographi-
cally confirmed moyamoya between January 2011 and
May 2015 underwent hemodynamic 3-T MRI (Philips)
performed using body coil transmission and 12-channel
sensitivity-encoding (SENSE) array neurovascular coil for
reception. Patients were included in the study if cerebral
digital subtraction angiography (DSA) was performed
within 90 days of MRI, without any surgical intervention
in the interval. Only hemispheres without a prior revascu-
larization procedure were considered.

Neurological Assessment

A neurologist (L.J.) retrospectively reviewed patient
symptomatology derived from the electronic medical
record. Symptomatic hemispheres were defined as those
with either a history of recurrent localizable transient is-
chemic attacks or persistent neurological deficits (motor,
sensory, and/or language) referable to the hemisphere.
Psychological symptoms, deficits in concentration and
memory, and/or headache were not included, given the po-
tential ambiguity in localization.

Imaging Protocol

The BOLD imaging sequences consisted of a T\(_2^*\)
weighted single-shot gradient-recalled echo planar imag-
ing acquisition (slice thickness 5 mm, TR/TE 2000/35
msec, field of view 240 \(\times\) 240 mm, spatial resolution 3
\(\times\) 3 \(\times\) 5 mm) across the entire brain. The experimental
paradigm consisted of 5 total blocks each of 3 minutes’
duration, beginning and ending with the delivery of med-
ical-grade (purified) room air and interleaved with hyper-
capnic gas (5% CO\(_2\)/95% O\(_2\)) administration. We have re-
cently quantified relationships between such hypercapnic
hyperoxic and hypercapnic normoxic stimuli in healthy
adults and patients with intracranial stenosis,\(^9\) and have
demonstrated the ability of this stimulus to be performed
safely in a large volume of patients, to provide contrast
consistent with symptomatology and lateralizing disease,
and to correlate with perfusion reactivity on appropriate
postprocessing. Gas delivery was performed using a cus-
tom-made nonbreathing face mask, and core physiologi-
cal parameters including end-tidal CO\(_2\) (ETCO\(_2\)), heart
rate, blood pressure, and arterial oxygen saturation were
monitored throughout the experiment.

Radiological Evaluation

Prior Infarct

Each hemisphere under review was considered sepa-
ately. Two board-certified neuroradiologists (M.K.S.,
L.T.D.) who were blinded to clinical history and hemody-
namic findings reviewed FLAIR imaging acquired at the
time of BOLD MRI to determine the presence of infarct.
The T\(_2\)-weighted imaging was also reviewed when avail-
able. For lacunar infarcts, a size criterion for hyperintense
lesions of greatest axial diameter \(\geq\) 4 mm on T\(_2\)-weighted
imaging was used to separate prior infarcts from white
matter changes.\(^10,22\) The T\(_1\)-weighted sequence was used
to verify encephalomalacia when infarcts were suspected
based on the FLAIR sequence.

Cerebrovascular Reactivity

Healthy control volunteers (n = 11; age 46 \(\pm\) 12 years
(mean \(\pm\) SD)) and patients (n = 25; 42 \(\pm\) 13.5 years) under-
went structural (T\(_1\)-weighted, T\(_2\)-weighted, FLAIR, MR
angiography) and hemodynamic (T\(_2^*\)- and CBF-weight-
ed) 3-T MRI (Fig. 1). The ICA territory was defined by a
predetermined mask (Fig. 2). The ICA-territory CVR
was assessed using susceptibility-weighted MRI during
a hypercapnic (AE\(_{T\text{CO}_2}\) approximately 5 mm Hg; 2 re-
peats) stimulus and normalized to cerebellar CVR. For
each patient hemisphere (anterior circulation), the number
of standard deviations by which CVR differed from the
control mean CVR (Z-statistic: mean = 0.69, SD = 0.19)
was calculated.

Digital Subtraction Angiography

Moyamoya changes on DSA were scored with a modi-
fied Suzuki score (mSS), ranging from 0 to IV by 2 neuro-
radiologists (M.K.S., L.T.D., Table 1), with higher grades
representing more severe disease.\(^30\) The mSS accounts
for ICA, middle cerebral artery (MCA), and anterior ce-
rebral artery disease, along with the presence or absence
A neuroimaging scoring system (PIRAMD) for moyamoya

In brief, DSA was divided into 7 anatomical sites based on Alberta Stroke Program Early CT Score (ASPECTS)-defined regional vascular territories:28,33 M1–M6 and basal ganglia (Fig. 3). An interventional neurologist (M.T.F.) and a neuroradiologist (M.K.S.) working in tandem reviewed each territory on DSA for

FIG. 1. Admission MRI studies obtained in a patient with a symptomatic left hemisphere. Corresponding atlas maps for hemodynamic sections (A) and orthogonal representations of reactivity maps (B), demonstrating impairment in CVR in the left hemisphere (yellow arrows). Right hemisphere (asymptomatic) PIRAMD score: 0 (Grade 1); left hemisphere (symptomatic) PIRAMD score: 10 (Grade 3). A = anterior; I = inferior; L = left; P = posterior; R = right; S = superior. Figure is available in color online only.

FIG. 2. The ICA territory masks used to define right (red) and left (blue) regions of interest for assessment of CVR. Figure is available in color online only.
each patient and assessed whether or not regional CBF was impaired for the ASPECTS-defined regions. A territory was considered impaired if there were no visible collateral vessels supplying the ischemic site or if there were collaterals only to the periphery of the ischemic site. A territory was considered not to be impaired if collateral flow provided complete irrigation of the ischemic bed or if there was normal anterograde flow. Flow classification was made based on consensus. The total number of impaired territories (0–7) was counted for each hemisphere.

Optimization of PIRAMD System and Analysis

Each component of PIRAMD was converted to a categorical variable and given a preliminary, simplified scoring system. The preliminary scoring system was optimized via simple logistic regression analysis and receiver operating characteristic (ROC) curve analysis by using symptomatology as the dependent variable to determine a clinically valid and statistically significant stratification system. Acceptability criteria were $p < 0.05$ for binary logistic regression analysis, and area under the curve (AUC) > 0.6 for ROC curve analysis. The PIRAMD component grading is summarized in Table 2.

Grading With the PIRAMD System

The relative weight for each factor in the PIRAMD score was determined by using the factor’s odds ratio from simple logistic regression analysis. The lowest odds ratio was used as the baseline by which all other factors

TABLE 1. Modified Suzuki scoring*

<table>
<thead>
<tr>
<th>Score</th>
<th>Description of Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No evidence of disease</td>
</tr>
<tr>
<td>I</td>
<td>Mild-to-moderate stenosis around ICA bifurcation w/ absent or slightly developed ICA MMD</td>
</tr>
<tr>
<td>II</td>
<td>Severe stenosis around the ICA bifurcation or occlusion of either proximal anterior or MCA branches w/ well-developed ICA MMD</td>
</tr>
<tr>
<td>III</td>
<td>Occlusion of both anterior & MCA branches w/ well-developed ICA MMD (only a few of anterior or MCA branches or both are faintly opacified in antegrade fashion through meshwork of ICA MMD)</td>
</tr>
<tr>
<td>IV</td>
<td>Complete occlusion of both anterior & MCA branches w/ absent or small amount of ICA MMD (w/o opacification of either anterior or MCA branches in antegrade fashion)</td>
</tr>
</tbody>
</table>

MMD = moyamoya disease.

TABLE 2. The PIRAMD scoring system

<table>
<thead>
<tr>
<th>Variable</th>
<th>Characteristics</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI</td>
<td>Prior infarct</td>
<td>1</td>
</tr>
<tr>
<td>CVR</td>
<td>Decreased</td>
<td>3</td>
</tr>
<tr>
<td>mSS</td>
<td>\geq Grade II</td>
<td>3</td>
</tr>
<tr>
<td>Collaterals</td>
<td>\geq 2 territories impaired</td>
<td>3</td>
</tr>
</tbody>
</table>

was made based on consensus. The total number of impaired territories (0–7) was counted for each hemisphere.

Fig. 3. Lateral projections (A, early-; B, mid-; and C, delayed-phase sequences) from left ICA injection on DSA. The 7 DSA territories measured are labeled in the lower row from the same left ICA injection (D, AP projection; E, lateral projection); impaired regions with delayed perfusion from collaterals are labeled in white (E). BG = basal ganglia; M1–M6 = ASPECTS territories.
were scaled. The weighted scores for each component of PIRAMD were added together for a raw PIRAMD score. The PIRAMD score was divided into 3 grades: PIRAMD 1, PIRAMD 2, and PIRAMD 3. Grade stratification was determined through optimization by ROC curve analysis and simple binary logistic regression analysis, considering PIRAMD score as a discrete independent variable for those purposes. The ROC and binary logistic regression analyses were also repeated for PIRAMD grade. Acceptability criteria were p < 0.01 for binary logistic regression analysis, and AUC > 0.8 for ROC curve analysis.

Validation of the PIRAMD System

Additional internal validation was conducted on the data set via a bootstrap method. The 95% confidence interval estimates for the binary logistic regression analyses were generated in SPSS using a bootstrap sample size of 1000. Bootstrapped p values and confidence intervals were obtained and reported. The ROC bootstrapping also was performed in SPSS using an adapted public domain macro (available at http://gjyp.nl/marta/ [Accessed February 16, 2016]), with a bootstrap sample size of 1000. Bootstrapped AUC and 95% confidence intervals were obtained and reported.

Results

Participants in Study

There were 25 participants with moyamoya in the study, accounting for 46 hemispheres (Table 3). The mean age was 42 years, with an SD of 12 years. Most patients were female (20; 80%). There were 28 (60.9%) symptomatic hemispheres. The majority of patients had bilateral disease (22; 88%). Four of the 46 hemispheres analyzed (8.7%) had undergone a prior contralateral revascularization surgery, but none had a prior ipsilateral revascularization surgery. The mean interval between MRI scan and diagnostic angiography was 30 days, with an SD of 24.2 days.

Structural MRI Data

Thirty (65.2%) hemispheres had a prior infarct on T2-weighted FLAIR imaging. With a prior infarct, the odds of having a symptomatic hemisphere were 4.6 times greater than without a prior infarct; however, the bootstrapped confidence interval estimates crossed unity and were not statistically significant (95% CI 0.3–3.3, p = 0.016; Table 4). The AUC for prior infarct was 0.670 (95% CI 0.539–0.802).

Hemodynamic MRI Data

After normalizing ICA territory CVR by total cerebellar CVR, 35 (76.1%) hemispheres had reduced normalized CVR relative to the control cohort. With CVR lower than control CVR, the odds of having a symptomatic hemisphere were 13 times greater than when normal or increased CVR was present (95% CI 1.1–22.6, p = 0.002). The AUC for CVR was 0.716 (95% CI 0.585–0.844).

Angiographic Data

Thirty-eight hemispheres (82.6%) had an mSS of ≥ Grade II. With an mSS in this range, the odds of having a symptomatic hemisphere were 17.2 times greater than with Grade 0–I mSS (95% CI 1.1–22.7, p = 0.008). The AUC for mSS was 0.678 (95% CI 0.560–0.793).

With regard to collateral flow impairment, 35 (76.1%) hemispheres had 2–7 territories impaired. With ≥ 2 impaired territories, the odds of having a symptomatic hemisphere were 13 times greater than with 0–1 impaired ter-

Table 3. Characteristics of patients and hemispheres in study

<table>
<thead>
<tr>
<th>Table 3. Characteristics of patients and hemispheres in study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristic</td>
</tr>
<tr>
<td>Demographic data</td>
</tr>
<tr>
<td>Age in yrs, mean ± SD</td>
</tr>
<tr>
<td>Female sex</td>
</tr>
<tr>
<td>Race</td>
</tr>
<tr>
<td>Asian/Pacific Islander</td>
</tr>
<tr>
<td>Black/African American</td>
</tr>
<tr>
<td>White/Caucasian, Hispanic/Latino</td>
</tr>
<tr>
<td>White/Caucasian, non-Hispanic/Latino</td>
</tr>
<tr>
<td>Clinical data</td>
</tr>
<tr>
<td>Bilateral moyamoya</td>
</tr>
<tr>
<td>Days between MRI & DSA, mean ± SD</td>
</tr>
<tr>
<td>By hemisphere (n = 46)</td>
</tr>
<tr>
<td>Symptomatic</td>
</tr>
<tr>
<td>Prior contralateral revascularization</td>
</tr>
<tr>
<td>Infarct</td>
</tr>
<tr>
<td>No prior infarct</td>
</tr>
<tr>
<td>Prior infarct</td>
</tr>
<tr>
<td>CVR</td>
</tr>
<tr>
<td>Normal/increased</td>
</tr>
<tr>
<td>Decreased</td>
</tr>
<tr>
<td>mSS</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>No. of collaterals impaired</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>PIRAMD grade</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>
ritories (95% CI 1.1–22.7, p = 0.006). The AUC for collaterals was 0.713 (95% CI 0.593–0.836).

Development of PIRAMD Score
After the simple analysis of the individual PIRAMD factors, the relative weighting for each factor was determined by scaling the odds ratio for prior infarct (4.6), because this had the lowest odds ratio. The PIRAMD scoring system is summarized in Table 2. Scores were added to ascertain the hemisphere’s PIRAMD score, and in this way, PIRAMD was scored from 0 to 10, with increasing score representing increasing impairment (Fig. 4).

The PIRAMD Grade
Hemispheres were divided into 3 severity grades based on total PIRAMD score: Grade 1, 0–5 points; Grade 2, 6–9 points; and Grade 3, 10 points. There were 0/8 (0%), 10/18 (55.6%), and 18/20 (90%) symptomatic PIRAMD Grade 1, 2, and 3 hemispheres, respectively (Fig. 5). The AUC for the PIRAMD grade (Grade 1–3) was 0.845 (95% CI 0.735–0.956). The AUC for the PIRAMD score (i.e., 0–10) was 0.860 (95% CI 0.746–0.974).

Discussion
The PIRAMD classification is a simple scoring system for impairment in moyamoya, which uses noninvasive functional MRI parameters in addition to angiographic data. The PIRAMD score was found to correlate well with symptomatology (AUC 0.860). There were 0/8 (0%), 10/18 (55.6%), and 18/20 (90%) symptomatic PIRAMD Grade 1, 2, and 3 hemispheres, respectively.

Patients with moyamoya are heterogeneous with regard to their clinical presentations and outcomes; however, angiographic studies alone may not be sufficient to understand patient pathophysiology. Clinical severity does not follow a perfect correlation with angiography, because proximal occlusions may be completely compensated by robust pial and lenticulostriate autocollateralization. In contrast, uncompensated mild stenosis may portend a severe course. In some cases, angiography findings may not even correlate with hemodynamic impairment. Because surgical candidacy is weighted heavily by imaging appearance and symptomatology, efforts to stratify patients for intervention are critical. A contemporary issue in the management of patients with moyamoya is the selection of impaired individuals who are likely to benefit from surgical revascularization. Cerebrovascular reactivity may be predictive of outcome and may be useful in noninvasive monitoring of such patients. Han et al. have shown that postrevascularization CVR correlates with graft patency and clinical outcomes in moyamoya.

Table 4. Correlations with symptomatology

<table>
<thead>
<tr>
<th>Component</th>
<th>AUC</th>
<th>95% CI</th>
<th>Subscore</th>
<th>OR</th>
<th>95% CI</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior infarct</td>
<td>0.670</td>
<td>0.539–0.802</td>
<td>Present</td>
<td>4.6</td>
<td>0.3–3.3</td>
<td>0.016</td>
</tr>
<tr>
<td>CVR</td>
<td>0.716</td>
<td>0.585–0.844</td>
<td>Decreased</td>
<td>13.0</td>
<td>1.1–22.6</td>
<td>0.002</td>
</tr>
<tr>
<td>mSS</td>
<td>0.678</td>
<td>0.560–0.793</td>
<td>≥ Grade II</td>
<td>17.2</td>
<td>1.1–22.7</td>
<td>0.008</td>
</tr>
<tr>
<td>Collaterals</td>
<td>0.713</td>
<td>0.593–0.836</td>
<td>≥ 2 territories</td>
<td>13.0</td>
<td>1.1–22.7</td>
<td>0.006</td>
</tr>
<tr>
<td>PIRAMD Grade</td>
<td>0.845</td>
<td>0.735–0.956</td>
<td>2</td>
<td>NA</td>
<td>20.4–22.5</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>NA</td>
<td>22.3–42.4</td>
<td>0.004</td>
</tr>
</tbody>
</table>

NA = not applicable.

Fig. 4. Graph showing the PIRAMD grade versus proportion of patients who were symptomatic. Vertical dashed lines represent PIRAMD Grade 2 (≥ 6) and Grade 3 (10) demarcations, respectively. Figure is available in color online only.
In intracranial stenosis in general, Mandell et al. showed that patients with impaired CVR were more likely to have hemodynamic normalization after extracranial-intracranial revascularization.24

There has been a robust effort in the field to quantify and understand hemodynamic impairment in moyamoya. The CBF and CBV increase in the early stages of impairment, and oxygen extraction fraction increases when CBF cannot increase sufficiently to meet oxygen demands.21 The current methods available for assessing these impairments include PET, SPECT, xenon-enhanced CT (Xe-CT), dynamic perfusion CT, dynamic susceptibility contrast MRI, arterial spin labeling MRI, and Doppler ultrasound (see Table 1 in Lee et al.21). However, many of these methods (e.g., PET, SPECT, Xe-CT, and dynamic perfusion CT) require ionizing radiation exposure and/or administration of exogenous contrast (e.g., Gd, which causes renal failure in up to 2% of cases3). Diagnostic angiography carries risk, with a complication rate as high as 1.2% in the Asymptomatic Carotid Atherosclerosis Study (ACAS),32 in addition to potential dose-dependent radiation-induced skin injuries.31

Magnetic resonance imaging can use blood oxygenation level as an endogenous contrast agent and therefore does not require exogenous contrast or ionizing radiation. It can be acquired serially during routine structural MRI and therefore holds promise as a noninvasive, readily available, and valid adjunct to routine imaging of patients with moyamoya. Additionally, MRI offers improved spatial (3- to 5-mm isotropic) and temporal (2- to 3-second) resolution, and may be more clinically available compared with PET and SPECT, especially in nonspecialized hospitals. In patients with intracranial disease, compensation for secondary reductions in cerebral perfusion pressure may initially be achieved via an increase in CBV and CBF.3,7

To assess this autoregulatory capacity, a vasostimulus such as carbogen can be administered. Carbogen serves to increase the arterial partial pressure of O₂ and CO₂, CBF, and CBV, and in turn increases blood oxygenation. The resulting increase in the ratio of oxyhemoglobin compared with deoxyhemoglobin will lead to an increase in T₂*-weighted MRI signal. The magnitude of this change in the BOLD signal, or CVR, reflects the ability of vessels to regulate CBF and CBV, indicating how close the parenchyma is to failing to meet the hemodynamic demand. This permits an endogenous signal to be measured, rather than having to rely on exogenous contrasts or acetazolamide. Carbogen is a safe substance for CVR measurement; in our experience with 92 consecutive patients, carbogen elicited no short-term neurological events, and longer-term (2-year) events fell within the expected range for patients with intracranial stenosis.9

Although the role of CVR in predicting long-term stroke risk is not yet completely known, numerous studies have established a strong correlation between CVR and intracranial vascular disease.9,15 In patients with moyamoya, strong inverse relationships between mean CVR and both the Suzuki score and the presence of collateral vessels have been identified.4,17 Patients with moyamoya that is refractory to medical management who undergo surgical revascularization have been shown to demonstrate postsurgical revascularization improvements in CVR in regions that were previously compromised.14,23,24

Using Xe-CT with acetazolamide challenge in 40 patients (80 hemispheres), Czabanka et al. created a similar scoring mechanism for moyamoya severity.6 Compromised cerebrovascular reserve capacity was defined with Xe-CT as a CBF decrease greater than 5% after acetazolamide challenge. Although for methodological reasons we were unable to compare PIRAMD to the Czabanka system directly, the AUC was similar between populations (0.80 for the Czabanka score vs 0.845 for the PIRAMD grade). Although that study has laid the foundation for using CVR in moyamoya severity stratification, the technical innovations that have occurred since then have led us to conclude that PIRAMD might be a more favorable scoring system for patients. This is particularly true in the US, where the use of xenon is not widespread due to concerns in the literature and from the FDA related to reports of respiratory side effects associated with xenon.3 Symptomatic classification was more conservative in our study. Whereas Czabanka et al. considered psychological or headache symptoms as bilaterally symptomatic, these were not counted in our study due to difficulty in localization. This may account for the apparent difference in the prevalence of symptomatic hemispheres between cohorts (60.9% in our study, 68% in the study by Czabanka et al.).

We find it interesting that a milder correlation with symptomatology in our study was found with prior infarct. This is not to say that prior infarct is not important; it indicates that significant hemodynamic impairment has already occurred. In fact, we found post hoc that 22/28 (78.6%) of symptomatic hemispheres had an infarct. There was, however, a high rate of clinically silent infarcts (8/30 infarcts, 26.7%), particularly in the watershed distribution. There was considerable collinearity with other PIRAMD components; if a prior infarct was present, impairment in another PIRAMD component was also present in all but 2 cases (28/30; 93.3%). Unsurprisingly, with prior infarct the mean PIRAMD score was 8.5, versus 6.2 without (p = 0.013). However, for the hemispheres without infarct (especially the 21% of symptomatic hemispheres without infarct), the PIRAMD score adds more clarity to hemodynamic impairment than infarct assessment alone. Patients without infarct may have other impairments that increase...
the PIRAMD score, and this may weigh more heavily on the decision to revascularize.

Therefore, it is useful to complement this information with functional measures of impairment. The angiographic assessment of collateral perfusion is a strong contributor to the PIRAMD score, because it allows a functional, dynamic assessment of territory perfusion. However, it is invasive and requires radiation, which may limit its use in serial monitoring. Thus, we offer a functional complement of parenchymal impairment via BOLD MRI. The measurement of CVR using MRI provides a noninvasive method for assessing hemodynamic instability. We found that reduced CVR carried a 13-fold increase in the odds of the patient being symptomatic. When synthesizing angiographic and structural/hemodynamic MRI evidence of impairment via the PIRAMD score, the probability of being symptomatic can be calculated. We found that hemispheres were asymptomatic until the PIRAMD score reached 6, at which point a precipitous proportional rise in symptomatology occurred (Fig. 4).

The PIRAMD severity grades may be useful in counseling patients for further management. In particular, patients with PIRAMD Grade 3, if not already symptomatic, might have a high risk of becoming symptomatic, and surgery should be more strongly considered. In contrast, patients with PIRAMD Grade 1 might not become symptomatic, and conservative management with serial monitoring may be recommended. Of course, although reduced CVR may be associated with greater stroke risk, the long-term risks of PIRAMD grades have not yet been evaluated, and would need to be assessed in larger prospective studies. Nonetheless, the strong correlation between PIRAMD score and symptomatology suggests it may still have a role in patient stratification.

Limitations of the Study

This study is limited by its retrospective nature and small sample size, necessitating univariate analysis. Although we included patients if DSA was performed within 90 days, it would have been more ideal to have these studies obtained concurrently; the mean interval between angiography and MRI was 30 days. Although we performed a limited internal validation via bootstrapping, prospective external validation with a larger number of patients is needed. This study addresses historic symptom risk, and does not predict future symptoms or postoperative response, and therefore we are continuing to evaluate this prospectively.

Conclusions

A scoring system for total impairment in moyamoya is proposed in which noninvasive hemodynamic and structural MRI parameters are used, along with conventional angiography. This scoring system was found to correlate with symptomatology and may provide a measure of hemodynamic severity in moyamoya, which could be used for guiding management decisions and evaluating intervention response.

Acknowledgments

This work was supported by the National Institutes of Health (SR01NS078828-02). Mr. Ladner received funding via the Medical Student Summer Research Fellowship from the AANS.

References
