Three-dimensional SPACE fluid-attenuated inversion recovery at 3 T to improve subthalamic nucleus lead placement for deep brain stimulation in Parkinson’s disease: from preclinical to clinical studies

*Suhan Senova, MD, MSc,1,4,5 Koichi Hosomi, MD, PhD,1,5,6 Jean-Marc Gurruchaga, MD,1,4,5 Gaëtane Gouello, MD,1,4,5 Naoufel Ouerchefani, MD,1,4,5 Yara Beaugendre, MD,1 Hélène Lepetit, PhD,1,4,5 Jean-Pascal Lefaucheux, MD, PhD,3,5 Romina Aron Badin, PhD,6 Julien Dauguet, PhD,6 Caroline Jan, PhD,6 Philippe Hantraye, PhD,6 Pierre Brugières, MD,2,4,5,7 and Stéphane Palfi, MD, PhD1,4,5

1Service de Neurochirurgie, 2Service de Neuroradiologie, and 3Service des Explorations Fonctionnelles, Assistance Publique des Hopitaux de Paris, Hôpital H. Mondor, DHU PePsy; 4Inserm U955 Team 14; 5Faculté de Médecine, Université Paris Est, Créteil; 6DSV/I2BM/MIRCen/Laboratory of Neurodegenerative Diseases, CNRS, Commissariat à l’Energie Atomique, Fontenay-aux-Roses; and 7DSV/I2BM/Neurospin/UNIACT, Commissariat à l’Energie Atomique, Saclay, France

OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a well-established therapy for motor symptoms in patients with pharmacoresistant Parkinson’s disease (PD). However, the procedure, which requires multimodal perioperative exploration such as imaging, electrophysiology, or clinical examination during macrostimulation to secure lead positioning, remains challenging because the STN cannot be reliably visualized using the gold standard, T2-weighted imaging (T2WI) at 1.5 T. Thus, there is a need to improve imaging tools to better visualize the STN, optimize DBS lead implantation, and enlarge DBS diffusion.

METHODS Gradient-echo sequences such as those used in T2WI suffer from higher distortions at higher magnetic fields than spin-echo sequences. First, a spin-echo 3D SPACE (sampling perfection with application-optimized contrasts using different flip angle evolutions) FLAIR sequence at 3 T was designed, validated histologically in 2 nonhuman primates, and applied to 10 patients with PD; their data were clinically compared in a double-blind manner with those of a control group of 10 other patients with PD in whom STN targeting was performed using T2WI.

RESULTS Overlap between the nonhuman primate STNs segmented on 3D-histological and on 3D-SPACE-FLAIR volumes was high for the 3 most anterior quarters (mean [± SD] Dice scores 0.73 ± 0.11, 0.74 ± 0.06, and 0.60 ± 0.09). STN limits determined by the 3D-SPACE-FLAIR sequence were more consistent with electrophysiological edges than those determined by T2WI (0.9 vs 1.4 mm, respectively). The imaging contrast of the STN on the 3D-SPACE-FLAIR sequence was 4 times higher (p < 0.05). Improvement in the Unified Parkinson’s Disease Rating Scale Part III score (off medication, on stimulation) 12 months after the operation was higher for patients who underwent 3D-SPACE-FLAIR–guided implantation than for those in whom T2WI was used (62.2% vs 43.6%, respectively; p < 0.05). The total electrical energy delivered decreased by 36.3% with the 3D-SPACE-FLAIR sequence (p < 0.05).

CONCLUSIONS 3D-SPACE-FLAIR sequences at 3 T improved STN lead placement under stereotactic conditions, improved the clinical outcome of patients with PD, and increased the benefit/risk ratio of STN-DBS surgery.

http://thejns.org/doi/abs/10.3171/2015.7.JNS15379

KEY WORDS anatomical MRI; Parkinson’s disease; deep brain stimulation; subthalamic nucleus; nonhuman primate; translational study; functional neurosurgery
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has proven to be an efficient therapy for motor symptoms in patients with pharmacoresistant Parkinson’s disease (PD). However, the procedure remains challenging because the full STN cannot be reliably visualized with 1.5- or 3-T MRI scanners in nonhuman primates (NHPs) or in human patients with PD. DBS requires multimodal perioperative explorations, including imaging, electrophysiological recordings along several trajectories, and/or clinical examination of the awake patient during macrostimulation. The surgical procedure to implant DBS electrodes could be safer and faster and provide better clinical benefit if new MRI sequences were developed.

The STN is a small nucleus that measures 20–30 mm. Targeting of the STN is currently done stereotactically, which implies that the STN can be located from outside of the skull. Help from an anatomical atlas may be limited because of intersubject variations of such a small and deep brain structure. To minimize electrophysiological trajectories to avoid potential brain-related injuries and adverse effects caused by chronic electrical stimulation of neural structures outside of the STN target or of the associative and limbic subterritories of the STN, it is important to optimize the target coordinate using direct visualization of the STN and segmentation relative to the surrounding structures.

The imaging gold standard for stereotactic STN targeting is T2-weighted imaging (T2WI) at 1.5 T. Even higher-magnetic-field MRI could be adequate for direct visualization of small brain nuclei, enabling higher contrast between gray and white matter. However, MR images at 3 or 7 T may be altered by higher spatial distortions. Thus, stereotactic targeting of the STN in patients with PD by direct visualization with ultra–high-field MRI with 3- or 7-T MR units may not be optimal. Furthermore, even at 7 T, the STN of NHPs cannot be delineated without a special contrast medium, such as the ultrasmall superparamagnetic iron oxide.

New spin-echo sequences for obtaining volumetric data sets with a great contrast-to-noise ratio in organs other than the brain have been proposed. Such sequences, termed sampling perfection with application-optimized contrasts using different flip angle evolutions (SPACE, Siemens), use nonspatially selective refocusing pulses with short-echo spacing to achieve extended echo trains and subsequent volumetric acquisition of a single slab of thin-slice sections. Such turbo spin echo sequences offer the advantages of being less sensitive to susceptibility artifacts and less sensitive to geometrical distortion artifacts than T2WI sequences at 3 T. With such a sequence, a higher magnetic field may be used to directly visualize the STN and stereotactically target it accurately and reliably.

The goal of our study was to evaluate preclinically and clinically a 3D-SPACE-FLAIR sequence at 3 T. It was optimized in NHPs and validated after their death using 3D reconstruction of the corresponding brain volume and in vivo through electrophysiological recordings. Then, our translational approach led us to use and validate it in a cohort of patients with PD.

Methods

Preclinical Part

Animals

Experimentation was performed in accordance with the international directive for Animal Welfare Assurance, Office of Laboratory Animal Welfare Number A5826-01, and validated by the local ethical committee 44 (Commissionat à l’Energie Atomique TEA Direction des Sciences du Vivant Ile de France). The veterinarians underwent nationally recognized training for NHP handling and care. Two 5-year-old macaques (*Macaca mulatta*) were included in the study.

MR Image Acquisition in NHPs

The macaques were anesthetized with intramuscular ketamine and xylazine (15 and 1.5 mg/kg, respectively, every 45 minutes). Their heads were fixed in an MRI-compatible stereotactic frame, and MR image acquisition was performed using a clinical 3-T MR scanner (Siemens VERIO) using a human birdcage coil. Three sequences in each monkey were acquired (Table 1).

Surgical Procedures (NHPs)

Each NHP was given general anesthesia and placed in a stereotactic frame. A microelectrode passing through a cannula was lowered from the cortical surface down to the

Table 1. MRI parameters

<table>
<thead>
<tr>
<th>Sequence</th>
<th>No. of Slices</th>
<th>FOV (mm)</th>
<th>Matrix</th>
<th>Slice Thickness (mm)</th>
<th>TR*</th>
<th>TE*</th>
<th>TI*</th>
<th>Band Width (Hz/ pixel)</th>
<th>No. of Excitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHPs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1WI</td>
<td>40 sagittal</td>
<td>154 × 154</td>
<td>192 × 192</td>
<td>0.8</td>
<td>2200</td>
<td>3.18</td>
<td>900</td>
<td>130</td>
<td>1</td>
</tr>
<tr>
<td>T2WI</td>
<td>120 coronal</td>
<td>134 × 100</td>
<td>192 × 144</td>
<td>0.7</td>
<td>9500</td>
<td>60</td>
<td></td>
<td>120</td>
<td>1</td>
</tr>
<tr>
<td>3D-S-F</td>
<td>144 coronal</td>
<td>192 × 192</td>
<td>256 × 256</td>
<td>0.75</td>
<td>6000</td>
<td>649</td>
<td>2000</td>
<td>698</td>
<td>4</td>
</tr>
<tr>
<td>Patients w/ PD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1WI</td>
<td>208 sagittal</td>
<td>270 × 270</td>
<td>256 × 256</td>
<td>1</td>
<td>2400</td>
<td>3.69</td>
<td>1000</td>
<td>179</td>
<td>1</td>
</tr>
<tr>
<td>T2WI</td>
<td>32 coronal</td>
<td>208 × 256</td>
<td>208 × 256</td>
<td>2</td>
<td>45</td>
<td>40</td>
<td></td>
<td>199</td>
<td>1</td>
</tr>
<tr>
<td>3D-S-F</td>
<td>160 sagittal</td>
<td>250 × 250</td>
<td>512 × 512</td>
<td>1</td>
<td>6000</td>
<td>372</td>
<td>2100</td>
<td>781</td>
<td>1</td>
</tr>
</tbody>
</table>

*FOV = field of view; 3D-S-F = 3D-SPACE-FLAIR.

* Measurement in milliseconds.
thalamus, zona incerta, STN, substantia nigra, and capsula interna. Targeting of the STN was done by direct visualization of the STN on preoperative 3D-SPACE-FLAIR images, and the appropriate trajectory was confirmed intraoperatively by recording the electrophysiological patterns of cerebral structures penetrated by the microTargeting electrodes (FHC) (impedance 0.8–1.5 MΩ at 1 kHz) (Fig. 1). Multunit activity was amplified and recorded through a 100- to 3000-Hz band pass by using a Medtronic LeadPoint system. The penetration of the cannula was stopped at the entrance of the STN (Fig. 1).

3D Histological Block (NHPs)

The procedure for obtaining the whole-brain histological volume has been previously described. It was made from 800 histological slices (each 40 μm thick). The contour of the STN on each slice of the histological volume was traced manually, and the histological STN volume was built by direct stacking (Fig. 1G). The STN segmentation was made with Anatomist software (CEA-I2BM).

Comparison of Histology and the 3D-SPACE-FLAIR Sequence (NHPs)

We estimated the overlap of the 2 STNs segmented on the histological volume and on the 3D-SPACE-FLAIR volume. The histological volume was registered with the in vivo T1-weighted MRI volume using a composition of 3D rigid, affine transformations and 3D cubic B-spline transformation. This transformation was applied to the histological STN volume. Spatial coregistration between the histological STN volume and the 3D-SPACE-FLAIR volume was performed with SPM8 (University College London).

The Dice score quantifies the intersection between 2 regions. The overlap is considered to be good for regions at which the Dice score is superior or equal to 0.6. Using this score, we evaluated the overlap between the segmentation of the STN derived from histology and the segmentation of the STN made on the 3D-SPACE-FLAIR volume slices (3D-SPACE-FLAIR-STN) (Fig. 1G and H). The STNs were segmented on the 3D-SPACE-FLAIR volume slices by an expert neurosurgeon in DBS surgeries who was blinded to the STN segmentation on the histological volume.

Clinical Part

Patients

Twenty patients with PD (mean 64.1 years old) who underwent bilateral STN-DBS guided with the 3D-SPACE-FLAIR sequence (FLAIR group; n = 10) or the gold standard T2WI (control group; n = 10) were enrolled prospectively between May 2010 and June 2012 according to technical and ethical standards validated by the Henri Mondor Hospital.

MR Acquisitions in Patients With PD

Up to 2 MRI acquisitions were performed depending on the patient group. The first MRI acquisition was performed with a whole-body 3-T MR scanner (Siemens VEO-RIO) using a 12-channel coil on the day before the operation for the FLAIR group (Fig. 2 left); the acquisition took 7 minutes. The second acquisition was performed with a whole-body 1.5-T MR scanner (Siemens AVANTO) using a monochannel Tx/Rx coil on the day of the operation for both groups, just after the fixation of a stereotactic frame and before the operation (Fig. 2 right, Table 1); T1- and T2*-weighted images took 4 minutes each to obtain.

Surgical Procedures (Patients With PD)

Each patient underwent surgery performed by the same expert neurosurgeon (S.P.). To implant DBS lead electrodes in the dorsolateral STN, patients with PD were given general anesthesia, and the depth of anesthesia was monitored with a bispectral index sensor. The patients were equipped with a Leksell Type G stereotactic frame (Elekta). MRI was performed. All MR images were imported in a FrameLink workstation (Medtronic), and the 3D-SPACE-FLAIR or T2-weighted image was fused to
the T1-weighted image. The surgical targets were planned by using the 3D-SPACE-FLAIR sequence (for the FLAIR group) or T2WI (for the control group) according to direct and red nucleus–based targeting. The STN was identified as a hypointense almond-shaped structure located anterolateral to the red nucleus on coronal, axial, and sagittal planes. The target was defined with the x coordinate 3 mm lateral to the lateral border of the red nucleus, the y coordinate the same as that of the anterior border of the red nucleus, and the z coordinate 2 mm inferior to the superior border of the red nucleus. The coordinate of the planned target was located 11–13 mm lateral to the midline, 1–3 mm posterior to the midcommissural point, and 3–5 mm inferior to the midcommissural point.

Electrophysiological recording was performed using 2 simultaneously lowered microTargeting microelectrodes, a central one and a posterior one. Multiunit activity was amplified and recorded through a 100- to 3000-Hz band pass with a Medtronic LeadPoint system. Recorded signals were analyzed with “turns-amplitude analysis” software implemented in LeadPoint. This method quantifies the number of changes in polarity of the signal (turns) and measures the absolute amplitude value between each turn at each millimeter of the track of the microelectrode recorded during the descending phase of the electrode. The numbers of passes of electrodes for the FLAIR and control groups were not different.

Entry into and exit from the STN were visually detected as a frank increase and frank decrease, respectively, in signal amplitude from the background activity and in the number of turns (electrophysiologically identified STN [eSTN]) caused by the density of hyperactive cells within the STN of patients with PD.

Postoperative confirmation of electrode position was made by fusion of preoperative MR images and CT images acquired 5 days after surgery. After surgery, the neurologist who specialized in DBS management optimized the stimulation parameters and medications.

Comparison of 3D-SPACE-FLAIR Imaging and T2WI (Patients With PD)

Spatial coregistration between the 2 sequences was performed with SPM8. We decided to compare the STN contrast offered by 3D-SPACE-FLAIR imaging and T2WI by delineating the contour of the STN on the 3D-SPACE-FLAIR coronal plane 2 mm posterior to the midcommissural point using Anatomist software. The coronal plane indeed offered the best direct visualization of the STN.

Because the contrast of the STN determined by using MRI (MRI-STN) varied relative to the surrounding structures, we discretized the contour of the MRI-STN by dividing it in elementary segments 6 pixels long (Fig. 3 left). We defined the contrast of the contour of the MRI-STN as the mean of contrasts of all elementary segments. Along and 1 pixel inside (outside) the STN of an elementary segment i, the region is called STN$_{int}$ (STN$_{ext}$). The contrast of an elementary segment i is as follows:

$$\text{Ci} = \frac{|\text{signal(STN}_{\text{int}}) - \text{signal(STN}_{\text{ext}})|}{\text{signal(STN}_{\text{int}}) + \text{signal(STN}_{\text{ext}})}$$

We measured this contrast in the FLAIR group for the STN segmented on both 3D-SPACE-FLAIR imaging (3D-SPACE-FLAIR-STN) and T2WI (T2WI-STN).

Comparison of 3D-SPACE-FLAIR Imaging and T2WI (Patients With PD)

Spatial coregistration between the 2 sequences was performed with SPM8. We decided to compare the STN contrast offered by 3D-SPACE-FLAIR imaging and T2WI by delineating the contour of the STN on the 3D-SPACE-FLAIR coronal plane 2 mm posterior to the midcommissural point using Anatomist software. The coronal plane indeed offered the best direct visualization of the STN.

Because the contrast of the STN determined by using MRI (MRI-STN) varied relative to the surrounding structures, we discretized the contour of the MRI-STN by dividing it in elementary segments 6 pixels long (Fig. 3 left). We defined the contrast of the contour of the MRI-STN as the mean of contrasts of all elementary segments. Along and 1 pixel inside (outside) the STN of an elementary segment i, the region is called STN$_{int}$ (STN$_{ext}$). The contrast of an elementary segment i is as follows:

$$\text{Ci} = \frac{|\text{signal(STN}_{\text{int}}) - \text{signal(STN}_{\text{ext}})|}{\text{signal(STN}_{\text{int}}) + \text{signal(STN}_{\text{ext}})}$$

We measured this contrast in the FLAIR group for the STN segmented on both 3D-SPACE-FLAIR imaging (3D-SPACE-FLAIR-STN) and T2WI (T2WI-STN).

Fig. 2. STN visualization in patients with PD on 3D-SPACE-FLAIR imaging (left) and T2WI (right) with coronal, axial, and sagittal views.

Fig. 3. Left: Manual segmentation of the STN on a 3D-SPACE-FLAIR image (coronal view). The inset shows a discretization of the internal and external STN contours. Right: Contrast of the contours of the STN on 3D-SPACE-FLAIR imaging and T2WI in the coronal view. Figure is available in color online only. Star = statistically significant.
Comparison of MRI-STN and eSTN

MRI-STN entry and exit points were identified with both 3D-SPACE-FLAIR imaging and T2WI. To identify eSTN entry and exit in the MR image, the postoperative CT image that showed definitive lead electrodes was superimposed on the MR image using the coregistration function of SPM8 (Fig. 4C–F). Coordinates of eSTN entry and exit points along the trajectory were identified on the 3D CT–MRI fusion image (3D-SPACE-FLAIR-STN or T2WI-STN). Optimal contact was the latest active contact(s) used clinically.

Comparison of Clinical Outcomes

We first compared various preimplantation scores, including the Unified Parkinson's Disease Rating Scale Part III (UPDRS III) (on and off medication), the UPDRS IV, the Hoehn and Yahr (H&Y) scale (on and off medication), and the levodopa equivalent daily dose (LEDD), with the scores 12 months after implantation (M12). Then, the clinical efficacy of STN-DBS when using 3D-SPACE-FLAIR imaging for the FLAIR group, or T2WI for the control group, was compared between the FLAIR and control groups as far as UPDRS III, UPDRS IV, H&Y scale, LEDD, and total electrical energy delivered (TEED) were concerned. All evaluations were double-blind relative to the sequence that was used for implantation by an expert neurologist.

Statistical Analysis

Differences in contrast values between the groups were evaluated by a paired t-test. A 2-sample t-test was used to evaluate the differences in position of MRI-STN and eSTN. Differences in UPDRS III, UPDRS IV, H&Y scale, LEDD, and TEED scores before implantation and at M12 were evaluated by a paired t-test. Differences in UPDRS III, UPDRS IV, H&Y scale, LEDD, and TEED scores between the groups were evaluated by
a 2-sample t-test. Findings with a p value of < 0.05 were considered statistically significant.

Results

Comparison of Histology and 3D-SPACE-FLAIR Imaging (NHPs)

For each NHP, the histological volume of the whole brain was built. The STNs of 2 monkeys were found to have a classical ovoid shape with a mean (± SD) volume of 14.9 ± 1.5 mm³ (n = 4) (Fig. 1G). The trace of the cannula used for electrophysiological recording was located above the STN, confirming the correct targeting of the STN when using 3D-SPACE-FLAIR imaging in NHPs (Fig. 1A).

On 3D-SPACE-FLAIR coronal slices, the STN was identified on each hemisphere as a deep brain almond-shaped hypointensity with sharp visual contrast with surrounding structures (Fig. 1E). STNs could not be seen with T1-weighted imaging (T1WI) or T2WI (Fig. 1C and D).

For overlap quantification between the histologically identified STN and the 3D-SPACE-FLAIR-STN (n = 4), mean Dice scores from the most anterior to the most posterior slice were 0.73 ± 0.11, 0.74 ± 0.06, 0.60 ± 0.09, and 0.42 ± 0.10 (Fig. 1G and H).

Comparison of 3D-SPACE-FLAIR Imaging and T2WI (Patients With PD)

The contrast between the STN and its surrounding structures on 3D-SPACE-FLAIR imaging was higher than that on T2WI (0.085 ± 0.023 vs 0.023 ± 0.009, respectively; p < 0.001) (Fig. 3 right).

Comparison of MRI-STN and eSTN

The mean differences between the limits of the 3D-SPACE-FLAIR-STN and eSTN were 0.93 ± 0.61 and 0.84 ± 0.66 mm, respectively, in the dorsal and ventral limits. The differences between the limits of T2WI-STN and eSTN were 1.51 ± 0.93 and 1.36 ± 0.88 mm, respectively, in the dorsal and ventral limits (Fig. 4G and H). The discrepancies between the MRI-STN and eSTN in both limits were significantly smaller in the FLAIR group than in the control group (p < 0.04). Contact 2 (counting bottom-up from 0 to 3), which corresponded to the dorsal portion of the STN, was mostly selected. The total number of recording trajectories per STN did not differ significantly (p = 0.12) between the FLAIR group (n = 2.4 ± 0.5) and the control group (n = 2.1 ± 0.22).

Clinical Outcome

The FLAIR and control groups did not differ statistically in their clinical characteristics before the surgical DBS procedure. UPDRS III (off medication, on stimulation), UPDRS IV, LEDD, and H&Y scale (off medication) scores were significantly lower at M12 than at baseline in both groups (Table 2).

At M12, relative to baseline, the FLAIR group experienced a significant larger decrease in the UPDRS III score (off medication, on stimulation) (62.2% ± 18.2% vs 43.6% ± 16.3%, respectively; p = 0.035) and a significant lower TEED (60.4 ± 25.1 vs 94.8 ± 29.1 µW, respectively; p < 0.001) than the control group.

Discussion

This translational research showed that the 3D-SPACE-FLAIR sequence at 3 T enhanced direct visualization of the STN, and there was a significant increase of contrast relative to surrounding structures in both NHPs and patients with PD over that in the gold standard T2WI.

To our knowledge, this is the first study with 3D histological validation of a 3-T MRI sequence aimed at direct visualization of the STN of NHPs, which constituted a key primary preclinical validation before its use in patients with PD.

A 3-T MRI sequence for direct visualization of the STN was proposed in only 1 other study in NHPs. How ever, that study involved the use of a contrast agent that has not yet been validated for use in patients with PD. In addition, the whole procedure for direct visualization of the STN with 3-T MRI (3D-SPACE-FLAIR imaging) in NHPs took 45 minutes, whereas the 3D-SPACE-FLAIR imaging method we report takes 28 minutes. There is a critical need to improve STN targeting in NHPs when administering viral vector or pharmacological injections into such a small structure. Moreover, the 3-T imaging scanner is also a tool that can be used in NHPs and in patients with PD; thus, common procedures may first be developed with and assessed in experimental animals before being translated successfully to use in patients.

This 3D-SPACE-FLAIR sequence was validated in patients with PD as an efficient sequence for direct visualization of the STN. First, this new sequence was compared with a gold-standard T2WI sequence. It increased the contrast between the STN and its surrounding struc-

<table>
<thead>
<tr>
<th>Score</th>
<th>Condition</th>
<th>FLAIR Group</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline UPDRS III</td>
<td>Off medication</td>
<td>37.6 (10.5)</td>
<td>38.4 (8.5)</td>
</tr>
<tr>
<td></td>
<td>On medication</td>
<td>10 (3.4)</td>
<td>13.9 (5.1)</td>
</tr>
<tr>
<td>UPDRS IV</td>
<td>9.8 (2.6)</td>
<td>9.2 (2.9)</td>
<td></td>
</tr>
<tr>
<td>LEDD</td>
<td>1393 (568.8)</td>
<td>1468.7 (558.9)</td>
<td></td>
</tr>
<tr>
<td>H&Y scale</td>
<td>Off medication</td>
<td>3.5 (0.7)</td>
<td>3.6 (0.7)</td>
</tr>
<tr>
<td></td>
<td>On medication</td>
<td>1.3 (0.6)</td>
<td>1.5 (0.7)</td>
</tr>
<tr>
<td>Follow-up UPDRS III</td>
<td>Off medication, on stimulation</td>
<td>13.5 (6.0) †</td>
<td>20.8 (4.8) †</td>
</tr>
<tr>
<td></td>
<td>On medication, on stimulation</td>
<td>10.3 (2.4)</td>
<td>17 (5.8)</td>
</tr>
<tr>
<td>UPDRS IV</td>
<td>3.5 (2.5) †</td>
<td>2.5 (2.5) †</td>
<td></td>
</tr>
<tr>
<td>LEDD</td>
<td>674.2 (331.3) †</td>
<td>586.3 (272.2) †</td>
<td></td>
</tr>
<tr>
<td>H&Y scale</td>
<td>Off medication, on stimulation</td>
<td>2.6 (1.1) †</td>
<td>2.3 (0.9) †</td>
</tr>
<tr>
<td></td>
<td>On medication, on stimulation</td>
<td>1.5 (1.1)</td>
<td>1.3 (0.7)</td>
</tr>
</tbody>
</table>

* Data are presented as the mean (SD). † Significant change compared to baseline.
Conclusions

Our study contributes to improvement in the accuracy of STN targeting for PD and reduction of the complexity of this surgery. It may help DBS procedures when the patient has undergone general or local anesthesia. Additional prospective clinical studies are necessary to validate our clinical findings, and the potential reduction in the severity of adverse events related to stimulation remains an open question.

This new imaging method could help the extension of DBS lead implantation when the patient has undergone
Acknowledgments

We thank La Fondation de France, Assistance Publique des Hopitaux de Paris (APHP), the Direction de la Recherche Clinique (DRCD) at APHP, the Commission des postes d’accueil CEA-APHP, ARSC, and the CEA for financial support; Martine Guillermier, for technical assistance; and Emmanuel Brouillet for his constant support.

References

31. Slavin KV, Thulborn KR, Wess C, Nersesyan H: Direct vi-
38. Wichmann T, Bergman H, DeLong MR: The primate subtha-

Disclosures
The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions
Conception and design: Palfi, Senova, Hosomi, Lepetit, Brugières. Acquisition of data: Palfi, Senova, Hosomi, Gurruchaga, Ouerchefani, Beaugendre, Badin, Jan, Brugières. Analysis and interpretation of data: Palfi, Senova, Hosomi, Gurruchaga, Lefaucheur, Dauguet, Brugières. Drafting the article: Senova, Hosomi. Critically revising the article: Palfi, Gurruchaga, Gouello, Ouerchefani, Beaugendre, Lepetit, Lefaucheur, Badin, Dauguet, Jan, Hantraye, Brugières. Reviewed submitted version of manuscript: Palfi, Senova, Hosomi, Gurruchaga, Lepetit, Brugières. Approved the final version of the manuscript on behalf of all authors: Palfi. Statistical analysis: Senova, Hosomi. Administrative/technical/material support: Palfi, Senova, Hosomi, Lepetit, Badin, Hantraye. Study supervision: Palfi.

Correspondence
Stéphane Palfi, Service de Neurochirurgie, CHU Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, Créteil 94110, France. email: stephane.palfi@hmn.aphp.fr.