Neurosurgical treatment of glossopharyngeal neuralgia: analysis of 103 cases

Yi Ma, MD, Yan-feng Li, MM, Quan-cai Wang, MM, Bin Wang, MM, and Hai-tao Huang, MM

2nd Department of Neurosurgery, Liaoning Provincial People’s Hospital, Shenyang, People’s Republic of China

OBJECTIVE The object of this study was to investigate the immediate and long-term follow-up results of glossopharyngeal nerve rhizotomy (GPNR) with or without partial vagus nerve rhizotomy (VNR) for treating glossopharyngeal neuralgia (GPN).

METHODS A retrospective review of the case notes of patients who had undergone surgery for GPN in the authors’ department between 2008 and 2013 was performed to investigate baseline characteristics and immediate outcomes during the hospitalization. For the long-term results, a telephone survey was performed, and information on pain recurrence and permanent complications was collected. Pain relief meant no pain or medication, any pain persisting after surgery was considered to be treatment failure, and any pain returning during the follow-up period was considered to be pain recurrence. For comparative study, the patients were divided into 2 cohorts, that is, patients treated with GPNR alone and those treated with GPNR+VNR.

RESULTS One hundred three procedures, consisting of GPNR alone in 38 cases and GPNR+VNR in 65 cases, were performed in 103 consecutive patients with GPN. Seventy-nine of the 103 patients could be contacted for the follow-up study, with a mean follow-up duration of 2.73 years (range 1 month–5.75 years). While there were similar results (GPNR vs GPNR+VNR) in immediate pain relief rates (94.7% vs 93.8%), immediate complication rates (7.9% vs 4.6%), and long-term pain relief rates (92.3% vs 94.3%) between the 2 cohorts, a great difference was seen in long-term complications (3.8% vs 35.8%). The long-term complication rate for the combined GPNR+VNR cohort was 9.4 times higher than that in the GPNR cohort.

There was no operative or perioperative mortality. Immediate complications occurred in 6 cases, consisting of poor wound healing in 3 cases, and CSF leakage, hoarseness, and dysfagia in 1 case each. Permanent complications occurred in 20 patients (25.3%) and included cough while drinking in 10 patients, pharyngeal discomfort in 8 patients, and hoarseness and dysphagia in 1 case each.

CONCLUSIONS In general, this study indicates that GPNR alone or in combination with VNR is a safe, simple, and effective treatment option for GPN. It may be especially valuable for patients who are not suitable for the microvascular decompression (MVD) procedure and for surgeons who have little experience with MVD. Of note, this study renews the significance of GPNR alone, which, the authors believe, is at least valuable for a subgroup of GPN patients, with significantly fewer long-term complications than those for rhizotomy for both glossopharyngeal nerve and rootlets of the vagus nerve.

http://thejns.org/doi/abs/10.3171/2015.3.JNS141806

KEY WORDS microvascular decompression; glossopharyngeal neuralgia; rhizotomy; peripheral nerve

Glossopharyngeal neuralgia (GPN) is a cranial nerve hyperactivity pain syndrome leading to paroxysmal attacks of facial pain lasting from a fraction of a second to minutes and experienced in the ear, base of the tongue, tonsillar fossa, or beneath the angle of the jaw. The pain is usually described as sharp, stabbing, and severe and is precipitated by swallowing, chewing, talking, coughing, and/or yawning. It is a rare clinical entity, representing only 0.2%–1.3% of facial pain syndromes. The overall incidence of GPN in the general population is estimated to be between 0.2 and 0.7 case per 100,000 people per year, although this incidence is probably underestimated due to insufficient awareness of this condition.
In 2004 the International Headache Society proposed a subclassification of GPN that includes the classic and symptomatic forms. In the classic type, the pain is only intermittent with no underlying cause or associated neurological deficit. The symptomatic type includes the same characteristics as the classic form, although the aching pain can persist between neuralgic episodes and sensory impairment can be found in the distribution of the above nerve because of structural lesions.

Because of the rarity of GPN and its overlap with other cranial nerve hyperactivity syndromes, such as trigeminal neuralgia (TN), superior laryngeal neuralgia, and nerve intermedius neuralgia, the diagnosis of GPN, not uncommonly, is challenging. The diagnosis is mainly established on comprehensive clinical grounds, as there is no specific test for this condition. Sometimes patients suspected of having GPN should also be seen by an ear, nose, and throat physician to exclude other diagnoses. High-resolution MRI or CT scanning is valuable in finding vascular compression, tumors, demyelinating lesions, or an elongated glossopharyngeal-vagal complex. Pain relief was defined as no pain or no need for medication, while any other results, including partial pain relief, were defined as treatment failure given that no quantitative measure, such as a visual analog scale, was used to analyze patients.

For the long-term follow-up results, an independent interviewer other than the operating surgeons performed a telephone survey. Information on pain recurrence and permanent complications was collected. Pain relief meant no pain or medication, while any pain returning during the follow-up period was considered to be pain recurrence.

For a comparative study, the patients were divided into 2 cohorts: patients treated with GPNR alone or with VNR.

Operative Technique

Under general anesthesia, patients were placed in the park bench position. A keyhole retromastoid craniotomy was performed to expose the inferior cerebellopontine angle. After opening the arachnoids around the glossopharyngeal-vagal complex, the glossopharyngeal and vagus nerves were observed carefully. If there was a distinct distance equal to or larger than the width of the glossopharyngeal nerve between these 2 nerves (Fig. 1A), the GPNR procedure alone was performed (Fig. 1B); otherwise, GPNR+VNR was performed. Usually, approximately 20%–30% of the vagus nerve was sectioned (Fig. 1C and D).

The main reason we preferred rhizotomy over MVD as our therapeutic option is attributed to the lack of experience in the MVD technique at the beginning stages of the study period. In the later stages, encouraged by the accumulation of experience learned from MVD for TN and hemifacial spasm (HFS), we began to explore the root entry zone of the glossopharyngeal and vagus nerves. In a small series of patients, microvascular decompression of the glossopharyngeal and vagus nerves was tried in addition to the rhizotomy procedure in the hope of achieving a higher treatment success rate, and the decompression was easily performed.

Methods

Patient Population

Approval for this study was obtained from the institutional ethics committee of Liaoning Provincial People’s Hospital. Between 2008 and 2013, after giving written informed consent, 103 consecutive patients, who conformed to the diagnostic criteria of the International Headache Society (Table 1) for classic GPN, underwent surgery at Liaoning Provincial People’s Hospital after medical therapy had failed.

A retrospective review of the case notes for these 103 patients was performed to investigate the baseline characteristics and immediate outcomes during the hospitalization. Pain relief was defined as no pain or no need for medication, while any other results, including partial pain relief, were defined as treatment failure given that no quantitative measure, such as a visual analog scale, was used to analyze patients.

TABLE 1. International Headache Society diagnostic criteria for classic GPN∗

<table>
<thead>
<tr>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Paroxysmal attacks of facial pain lasting from a fraction of a second to 2 minutes & fulfilling criteria 2 and 3</td>
</tr>
<tr>
<td>2) Pain has all of the following characteristics:</td>
</tr>
<tr>
<td>a) unilateral location</td>
</tr>
<tr>
<td>b) distribution w/in the posterior part of the tongue, tonsillar fossa, pharynx or beneath the angle of the lower jaw &/or in the ear</td>
</tr>
<tr>
<td>c) sharp, stabbing, & severe</td>
</tr>
<tr>
<td>d) precipitated by swallowing, chewing, talking, coughing, &/or yawning</td>
</tr>
<tr>
<td>3) Attacks are stereotypical in the individual patient</td>
</tr>
<tr>
<td>4) There is no clinically evident neurological deficit</td>
</tr>
<tr>
<td>5) Not attributed to another disorder†</td>
</tr>
</tbody>
</table>

* The International Headache Society has divided GPN into the classic and symptomatic types. In symptomatic GPN, the description is as in classic GPN with the proviso that aching pain may persist between paroxysms and sensory impairment may be found in the distribution of the glossopharyngeal nerve.
† Other causes have been ruled out by history, physical examination, and/or special investigation.
For patients with a combined hyperactive dysfunction syndrome of the cranial nerves, we usually preferred to deal with the glossopharyngeal and vagus nerve complex first, then to explore the trigeminal or facial nerve and decompress the offending vessels related to them.

Statistical significance was defined as \(p < 0.05 \) for comparing the demographic data of the 2 patient cohorts.

Results

The baseline characteristics of these 2 patient cohorts are outlined in Table 2 and can be summarized as follows (GPNR vs GPNR+VNR): mean age (years), 57.95 (range 34–79) versus 58.14 (range 39–76); mean preoperative duration of symptoms (years), 5.5 (range 0.17–20) versus 4.8 (range 0.08–10.75); right side/left side, 16/22 versus 34/31; sex (female/male), 23/15 versus 38/27; combined TN syndrome (case number), 18 versus 21; combined HFS syndrome (case number), 1 versus 1; neurovascular compression (NVC) at the glossopharyngeal and vagus nerves seen during surgery (case number), 7 versus 28. All of the variables except NVC were comparable between the 2 groups.

A total of 103 procedures were undergone by the 103 patients, including GPNR alone in 38 patients and GPNR+VNR in 65 patients. Seventy-nine of the study patients could be contacted for the follow-up data, with a mean follow-up duration of 2.73 years (range 1 month–5.75 years). Detailed information on immediate and long-term outcomes for the 2 patient cohorts is presented in Table 3. While there were similar results in immediate pain relief rates (94.7% vs 93.8%), immediate complication rates (7.9% vs 4.6%), and long-term pain relief rates (92.3% vs 94.3%), a great difference was seen in long-term complication rates (3.8% vs 35.8%), which meant that the long-term complication rate for the GPNR+VNR cohort was 9.4 times higher than that for the GPNR cohort.

There was no operative or perioperative mortality. Immediate complications were seen in 6 cases, consisting of CSF leakage in 1 case, which was successfully controlled by lumbar drainage for 4 days; poor wound healing in 3 cases, which subsequently healed after debridement of the wound; and hoarseness and dystaxia in 1 case each. Permanent complications were seen in 20 (25.3%) of the 79 patients contacted during the follow-up period and included coughing while drinking in 10 cases, pharyngeal discomfort in 8 cases, and hoarseness and dysphagia in 1 case each.

Because the more common complications related to paralysis of the glossopharyngeal and vagus nerves, such as coughing when drinking and pharyngeal discomfort, were investigated only in the follow-up period, a higher complication rate was presented in the long-term follow-up period.

Discussion

To our knowledge, this is the third larger series investigating the surgical treatment of GPN, which consisted of 103 consecutive patients. The results achieved in both patient cohorts—immediate pain relief rates of 94.7% and 93.8%, perioperative complication rates of 7.9% and 4.6%, long-term pain relief rates of 92.3% and 94.3%, and long-term complications rates of 3.8% and 35.8% in the GPNR.
and GPNR+VNR cohorts, respectively—are roughly in line with those reported by others who have treated GPN with nerve rhizotomy either alone or in combination with MVD.5,8,13–15,19,23,26 The mean follow-up duration was 2.73 years. There was no surgical mortality or life-threatening complications throughout the study period.

In reviewing the literature, we found the first larger series published by Rushton et al. in 1981,23 which consisted of 217 patients with GPN who had undergone MVD at the University of Pittsburgh between 1973 and 2000. In that study population, MVD for the treatment of GPN afforded complete immediate relief for 67% of all patients, and an additional 25% obtained partial relief, whereas 8% of patients experienced no significant change in symptoms after surgery. Long-term results were collected from 50 patients who could be contacted for these data. Among these patients, long-term relief was noted in 58% of patients and partial relief in 18%. Surgery-related death occurred in 5.8% patients, with all instances in the earlier stages of their practice between 1973 and 1987, whereas the percentage of patients with specific complications in each time period significantly decreased across quartiles from remote to most recent (from 15.4% to 5.9%).

In 2004, Sampson et al.24 described their series of 47 consecutive patients who had undergone MVD for the treatment of GPN; 46 (98%) patients had immediate symptom relief. More than 10 years (median 12.7 years) long-term follow-up data were available for 29 (62%) of these 47 patients. Symptom relief was still present in 97% of these patients, while permanent neurological deficits (> 6 months) attributed to the surgery were seen in 5 (11%) patients, including mild hoarseness or dysphagia or both in 4 cases and moderate (Grade II/VI) facial nerve paresis in 1 patient.

Of particular interest in our study is the finding that 38 of 103 patients were treated with GPNR alone instead of GPNR+VNR. For the 2 patient cohorts, it was shown that most of the variables were comparable, except for long-term complication, which was 3.8% versus 35.8%, respectively. Because this study was retrospective and uncontrolled and because some baseline variables were not statistically matched, it did not have statistical power; nevertheless, a 9.4 times difference between long-term complication rates seemed to imply a tendency for more long-term complications with the GPNR+VNR procedure.

Looking back on the history of surgical treatment for GPN, we found that severe pain in the distribution of the glossopharyngeal nerve was first reported in 1910 by Weisenberg, in a 35-year-old male with a right cerebellopontine angle tumor.28 In 1920, Sicard and Robineau described 3 patients with a similar syndrome, and they introduced extracranial nerve avulsion as the first surgical option for the treatment of GPN.23 However, their approach was aborted because of its high morbidity and pain recurrence due to a lack of supraganglionic ablation. After Adson1 in 1924 first described the basic intradural approach of sectioning the glossopharyngeal nerve based on cadaveric dissection, Dandy6 in 1927 was the first to report sectioning of the glossopharyngeal nerve intradurally. Later it was noted that even though short-term results were good after these procedures, long-term pain recurrence was frequent and the sectioning of certain rootlets of the vagus nerve might improve long-term outcomes.2,22 Since

TABLE 3. Immediate and long-term outcomes in 2 patient cohorts

<table>
<thead>
<tr>
<th>Parameter</th>
<th>GPNR (%)</th>
<th>GPNR+VNR (%)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of patients</td>
<td>38 (100.0)</td>
<td>65 (100.0)</td>
<td></td>
</tr>
<tr>
<td>Pain relief</td>
<td>36 (94.7)</td>
<td>61 (93.8)</td>
<td>0.852</td>
</tr>
<tr>
<td>Complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSF leakage</td>
<td>0 (0.0)</td>
<td>1 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Poor wound healing</td>
<td>2 (0.1)</td>
<td>1 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Hoarseness</td>
<td>0 (0.0)</td>
<td>1 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Dystaxia</td>
<td>1 (0.0)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3 (7.9)</td>
<td>3 (4.6)</td>
<td>0.493</td>
</tr>
<tr>
<td>Long-term outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of patients</td>
<td>26 (100.0)</td>
<td>53 (100.0)</td>
<td></td>
</tr>
<tr>
<td>Pain relief</td>
<td>24 (92.3)</td>
<td>50 (94.3)</td>
<td>0.727</td>
</tr>
<tr>
<td>Recurrence</td>
<td>2 (7.7)</td>
<td>3 (5.7)</td>
<td></td>
</tr>
<tr>
<td>Complications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough while drinking</td>
<td>0 (0.0)</td>
<td>10 (0.2)</td>
<td></td>
</tr>
<tr>
<td>Pharyngeal discomfort</td>
<td>1 (0.0)</td>
<td>7 (0.1)</td>
<td></td>
</tr>
<tr>
<td>Hoarseness</td>
<td>0 (0.0)</td>
<td>1 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Dysphagia</td>
<td>0 (0.0)</td>
<td>1 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1 (3.8)</td>
<td>19 (35.8)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

CSF = cerebral spinal fluid.
then, the combined procedure of GPNR+VNR became the main treatment for GPN, until it was gradually replaced by the MVD procedure in recent years. Although many series have advocated rhizotomy of the upper rootlets of the vagus nerve in addition to rhizotomy of the glossopharyngeal nerve, we failed to find a satisfactory explanation for the rationale underlying this option. It seems that this option may be considered an anecdotal therapeutic procedure, with its main support based on limited series with fewer patients.²,²⁰

The limited experience obtained from our series is obviously not enough to advocate GPNR alone as a reliable procedure for the treatment of GPN; however, the promising outcomes obtained encourage us to speculate that the option is at least valuable for a subgroup of patients with GPN.

Conclusions

In general, our study indicates that GPNR alone or in combination with VNR is a safe, simple, and effective option for patients with GPN. Although many series have advocates for the MVD procedure and for surgeons who do not have much experience with the MVD technique. Moreover, as its major purpose, our study renews the significance of GPNR alone, which we believe is at least effective for a subgroup of patients with GPN.

References

28. Weisenstein TH: Cerebello-pontine tumor diagnosed for six years as tic doloureux; the symptoms of irritation of the ninth and twelfth cranial nerves. JAMA 54:1600–1604, 1910

Disclosure

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions

Conception and design: Ma, Li. Acquisition of data: Q Wang, B Wang. Analysis and interpretation of data: Ma, Li. Drafting the article: Ma. Critical revising the article: Ma, Li. Reviewed submitted version of manuscript: Ma. Approved the final version of the manuscript on behalf of all authors: Ma. Statistical analysis: Q Wang. Administrative/technical/material support: Huang.

Correspondence

Yi Ma, 2nd Department of Neurosurgery, Liaoning Provincial People’s Hospital, No. 33, Wenyi Rd., Shene District, Shenyang 110016, China. email: doctormayi@126.com.