Anaplastic meningioma: octreotide therapy for a case of recurrent and progressive intracranial disease

Richard Rammo, MD,1 Adam Rock, BS,2 Andrea Transou, BS,1 Aditya Raghu Nathan, MD,3 and Jack Rock, MD1

1Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, Michigan; 2Rosalind Franklin University Medical School, North Chicago, Illinois; and 3Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota

Meningiomas are common intracranial tumors categorized as Grades I–III per the current WHO guidelines. A small percentage of meningiomas are Grades II and III, which are likely to recur after initial treatment. Grade III meningiomas are considered to be malignant and warrant aggressive management. If surgery and radiation fail to produce lasting remission, effective treatment options for patients with progressive anaplastic meningiomas are elusive. The authors present the case of a patient with a meningioma that gradually progressed from Grade I to Grade III over 12 years despite repeated surgery and radiation therapy. The patient has been in remission for over 3 years following octreotide therapy.

http://thejns.org/doi/abs/10.3171/2015.1.JNS142260

KEY WORDS intracranial; meningioma; octreotide; oncology

Meningiomas are common intracranial tumors categorized as Grades I–III by the WHO.11 The majority of Grade I meningiomas behave in an indolent manner and can be completely removed by resective surgery, or their growth can be controlled by radiation therapy. A small percentage of meningiomas are Grades II and III, which have variable growth patterns and are likely to recur after initial treatment. Grade III meningiomas are considered to be anaplastic (malignant) and warrant aggressive management. Unfortunately, there are limited treatment options beyond surgery and radiation for patients with Grades II and III meningiomas. In many patients the Grade II meningioma will gradually convert to Grade III. Initial treatment(s) will fail in most patients with Grade III meningiomas, and they will ultimately succumb to recurrent and progressive tumor. In this report, we present an encouraging case of a patient who—after 5 intracranial surgeries and 3 stereotactic radiation treatments for malignant meningioma—has had stable disease for 3.5 years following the initiation of octreotide therapy. We also review the current treatment options for recurrent malignant meningioma.

Case Report

History and Examination

In 1994, a 35-year-old woman presented with worsening seizures and was found to have a right frontal mass, which was embolized and subsequently resected. Histological examination demonstrated a proliferation of relatively uniform, bland meningothelial cells that were frequently arranged as the characteristic whorls (Fig. 1). At most, we identified 2 mitoses per 10 hpf (magnification ×400). A thin rim of brain tissue was present and did not show invasion by the meningioma. Per the 2007 WHO Classification of Tumours of the Central Nervous System guidelines,11 this tumor was consistent with the diagnosis of a Grade I meningioma. In 1998, the patient experienced a small recurrence that was treated by Gamma Knife radiosurgery with 16 Gy to the 90% isodose line. Subsequent progression at the treated site led to additional radiosurgery in 2002 (16 Gy to the 15% isodense line) and 2004 (15 Gy to the 40% isodense line).

In 2008, the tumor continued to progress and was noted primarily on the right side of the falx and extending slightly across the midline, occluding the sagittal sinus (Fig. 2A). The next intervention was embolization followed by resection leading to minimal residual tumor at the posterior aspect of the involved sagittal sinus (Fig. 2B). Histological examination revealed an atypical meningioma (WHO Grade II; Fig. 2C) with marked cytological atypia, up to 6 mitoses per 10 hpf, and a Ki 67 labeling index of approximately 30% in the most active areas. Repeat MRI 2 months postoperatively demonstrated an increased size of the residual tumor. Stereotactic radiation was recom-
The octreotide immunohistochemical stain showed moderately strong membranous and granular cytoplasmic staining in a majority of the tumor. μm = μm. Figure is available in color online only.

Magnetic resonance imaging in early 2009 showed the residual meningioma increased in size over the right frontal region and an enhancing intramuscular lesion within the temporalis muscle (Fig. 4A). Surgery was undertaken, and the histological sections revealed residual anaplastic meningioma (WHO Grade III; Fig. 3B) with cytological anaplasia, up to 24 mitoses per 10 hpf, and a Ki 67 labeling index of up to approximately 75%—80% in the most active areas. Radiation was again discussed, but again the patient refused.

Histological Analysis of Octreotide Expression

Following this remission-free period, histological sections from the surgically resected specimens were reviewed and examined for the expression of octreotide. Briefly, 5-μm-thick sections from archival formalin-fixed, paraffin-embedded tissue from surgeries performed in 1994, early 2008, and late 2008 were deparaffinized, rehydrated, and stained progressively with Biocare Medical’s CAT hematoxylin for 1 minute. The slides were then counterstained with Richard-Allan Scientific’s Eosin-Y for 1 minute, dehydrated, and cleared, and a coverslip was added. There are 6 subtypes of octreotide receptors: 1, 2A, 2B, 3, 4, and 5. Immunohistochemical staining was performed to evaluate expression of the octreotide receptor subtype 2A antibody as a surrogate for octreotide expression. The sections were pretreated with formic acid (80% solution for 8 minutes) and subsequently immersed in a 0.3% hydrogen peroxide solution in phosphate-buffered saline (PBS) for 30 minutes to neutralize endogenous peroxide activity. Sections were incubated overnight at 4°C with a monoclonal antibody against mg every 4 weeks. Since mid 2011, the patient has continued with this regimen and her disease has remained stable as of July 2014 with regression of the right frontal lesion noted in 2011 and without progression or recurrence at any other site (Fig. 5). She has taken no other medications (that is, vitamins, herbal treatments, or other orally ingest ed agents that might be considered alternative treatments).

Histological Analysis of Octreotide Expression

Following this remission-free period, histological sections from the surgically resected specimens were reviewed and examined for the expression of octreotide. Briefly, 5-μm-thick sections from archival formalin-fixed, paraffin-embedded tissue from surgeries performed in 1994, early 2008, and late 2008 were deparaffinized, rehydrated, and stained progressively with Biocare Medical’s CAT hematoxylin for 1 minute. The slides were then counterstained with Richard-Allan Scientific’s Eosin-Y for 1 minute, dehydrated, and cleared, and a coverslip was added. There are 6 subtypes of octreotide receptors: 1, 2A, 2B, 3, 4, and 5. Immunohistochemical staining was performed to evaluate expression of the octreotide receptor subtype 2A antibody as a surrogate for octreotide expression. The sections were pretreated with formic acid (80% solution for 8 minutes) and subsequently immersed in a 0.3% hydrogen peroxide solution in phosphate-buffered saline (PBS) for 30 minutes to neutralize endogenous peroxide activity. Sections were incubated overnight at 4°C with a monoclonal antibody against mg every 4 weeks. Since mid 2011, the patient has continued with this regimen and her disease has remained stable as of July 2014 with regression of the right frontal lesion noted in 2011 and without progression or recurrence at any other site (Fig. 5). She has taken no other medications (that is, vitamins, herbal treatments, or other orally ingest ed agents that might be considered alternative treatments).

Histological Analysis of Octreotide Expression

Following this remission-free period, histological sections from the surgically resected specimens were reviewed and examined for the expression of octreotide. Briefly, 5-μm-thick sections from archival formalin-fixed, paraffin-embedded tissue from surgeries performed in 1994, early 2008, and late 2008 were deparaffinized, rehydrated, and stained progressively with Biocare Medical’s CAT hematoxylin for 1 minute. The slides were then counterstained with Richard-Allan Scientific’s Eosin-Y for 1 minute, dehydrated, and cleared, and a coverslip was added. There are 6 subtypes of octreotide receptors: 1, 2A, 2B, 3, 4, and 5. Immunohistochemical staining was performed to evaluate expression of the octreotide receptor subtype 2A antibody as a surrogate for octreotide expression. The sections were pretreated with formic acid (80% solution for 8 minutes) and subsequently immersed in a 0.3% hydrogen peroxide solution in phosphate-buffered saline (PBS) for 30 minutes to neutralize endogenous peroxide activity. Sections were incubated overnight at 4°C with a monoclonal antibody against mg every 4 weeks. Since mid 2011, the patient has continued with this regimen and her disease has remained stable as of July 2014 with regression of the right frontal lesion noted in 2011 and without progression or recurrence at any other site (Fig. 5). She has taken no other medications (that is, vitamins, herbal treatments, or other orally ingest ed agents that might be considered alternative treatments).

Histological Analysis of Octreotide Expression

Following this remission-free period, histological sections from the surgically resected specimens were reviewed and examined for the expression of octreotide. Briefly, 5-μm-thick sections from archival formalin-fixed, paraffin-embedded tissue from surgeries performed in 1994, early 2008, and late 2008 were deparaffinized, rehydrated, and stained progressively with Biocare Medical’s CAT hematoxylin for 1 minute. The slides were then counterstained with Richard-Allan Scientific’s Eosin-Y for 1 minute, dehydrated, and cleared, and a coverslip was added. There are 6 subtypes of octreotide receptors: 1, 2A, 2B, 3, 4, and 5. Immunohistochemical staining was performed to evaluate expression of the octreotide receptor subtype 2A antibody as a surrogate for octreotide expression. The sections were pretreated with formic acid (80% solution for 8 minutes) and subsequently immersed in a 0.3% hydrogen peroxide solution in phosphate-buffered saline (PBS) for 30 minutes to neutralize endogenous peroxide activity. Sections were incubated overnight at 4°C with a monoclonal antibody against mg every 4 weeks. Since mid 2011, the patient has continued with this regimen and her disease has remained stable as of July 2014 with regression of the right frontal lesion noted in 2011 and without progression or recurrence at any other site (Fig. 5). She has taken no other medications (that is, vitamins, herbal treatments, or other orally ingest ed agents that might be considered alternative treatments).

Histological Analysis of Octreotide Expression

Following this remission-free period, histological sections from the surgically resected specimens were reviewed and examined for the expression of octreotide. Briefly, 5-μm-thick sections from archival formalin-fixed, paraffin-embedded tissue from surgeries performed in 1994, early 2008, and late 2008 were deparaffinized, rehydrated, and stained progressively with Biocare Medical’s CAT hematoxylin for 1 minute. The slides were then counterstained with Richard-Allan Scientific’s Eosin-Y for 1 minute, dehydrated, and cleared, and a coverslip was added. There are 6 subtypes of octreotide receptors: 1, 2A, 2B, 3, 4, and 5. Immunohistochemical staining was performed to evaluate expression of the octreotide receptor subtype 2A antibody as a surrogate for octreotide expression. The sections were pretreated with formic acid (80% solution for 8 minutes) and subsequently immersed in a 0.3% hydrogen peroxide solution in phosphate-buffered saline (PBS) for 30 minutes to neutralize endogenous peroxide activity. Sections were incubated overnight at 4°C with a monoclonal antibody against mg every 4 weeks. Since mid 2011, the patient has continued with this regimen and her disease has remained stable as of July 2014 with regression of the right frontal lesion noted in 2011 and without progression or recurrence at any other site (Fig. 5). She has taken no other medications (that is, vitamins, herbal treatments, or other orally ingest ed agents that might be considered alternative treatments).
the octreotide receptor 2A (clone PA3–109, 1:5000 dilution, Thermo Fisher Scientific) diluted in a PBS solution containing 2% horse serum, 0.3% Triton X-100, and 0.1% sodium azide. Sections were then incubated with an anti–mouse biotinylated IgG antibody (Biocare Medical) for 1 hour, and the antibody complex was revealed using the avidin biotin peroxidase method (4plus detection system, Biocare Medical) with horseradish peroxidase and with diaminobenzidine as a substrate. All sections were lightly counterstained with Mayer’s hematoxylin.

Discussion

While not all intracranial meningiomas require treatment and many can be monitored with MRI for growth, generally, the first-line treatment is surgery, which for many patients represents a definitive and curative option. However, meningiomas on the skull base and along the venous sinuses are often not amenable to complete excision and can recur. In some patients radiotherapy may be an initial treatment option, but more often it is used as an adjuvant or secondary therapy.9

Various chemotherapeutic agents have been used in patients with recurrent meningiomas, including hydroxyurea, temozolomide, irinotecan, tamoxifen, and mifepristone (RU-486). To date, none of these agents has shown consistent efficacy in controlling the growth of recurrent meningiomas.3,6,7,10,12,17

Interferon alpha-2B is thought to exert both antiproliferative and antiangiogenic effects that have been implicated in the treatment of meningiomas. The efficacy of subcutaneous interferon alpha-2B in the treatment of these tumors was investigated in 6 patients exhibiting recurrent or unresectable meningioma.9 Results demonstrated tumor stabilization in 6 of 6 patients, with tumor regression observed in 1 of 6 patients. The beneficial effects of interferon alpha-2B were noted to last from 6 to 14 months with minimal adverse effects (for example, flu-like symptoms, injection site pain, and mild leukopenia). Interferon alpha-2B may have been effective in the treatment of these patients, and although the investigators suggested that these results warrant follow-up with a larger prospective study, it is unclear whether these positive treatment effects may have been confounded by the natural history of the disease.10

Hydroxyurea is hypothesized to prevent tumor progression via inhibition of ribonucleotide reductase and subsequent DNA synthesis because cells undergoing this process may eventually undergo apoptosis in the S phase of the cell cycle. In a series assessing hydroxyurea treat-

![Fig. 3. A: Preoperative axial T1-weighted MR image with contrast demonstrating a large recurrence in the right frontal lobe. B: The meningothelial proliferation is predominantly arranged as sheets, shows marked cytological anaplasia, and has up to 24 mitotic figures per 10 hpf, corresponding to anaplastic meningioma, (2007) WHO Grade III, H & E. C: The octreotide immunohistochemical stain in this material shows weak membranous and cytoplasmatic staining in focal areas. Figure is available in color online only.](image1)

Fig. 4. A: A 2009 preoperative axial T1-weighted MR image with contrast demonstrating extracranial recurrence of the tumor. B: Octreotide scintiscan demonstrating hyperintensity in the frontal region. C: Early 2010 preoperative axial T1-weighted MR image with contrast demonstrating large frontal extracranial recurrence. D: A 2011 axial T1-weighted MR image with contrast demonstrating a small recurrence in the right frontal lobe.

![Fig. 3. A: Preoperative axial T1-weighted MR image with contrast demonstrating a large recurrence in the right frontal lobe. B: The meningothelial proliferation is predominantly arranged as sheets, shows marked cytological anaplasia, and has up to 24 mitotic figures per 10 hpf, corresponding to anaplastic meningioma, (2007) WHO Grade III, H & E. C: The octreotide immunohistochemical stain in this material shows weak membranous and cytoplasmatic staining in focal areas. Figure is available in color online only.](image2)
Octreotide therapy for anaplastic (malignant) meningioma

Octreotide is an inhibitory neuropeptide released by the hypothalamus. Many brain tumors express octreotide receptors, but meningiomas also frequently demonstrate a high level of expression. The presence of receptors can be confirmed by octreotide scintigraphy or staining of a specimen. Octreotide is thought to be antimitotic, as growth is suppressed. Schulz et al. had a series of 8 patients with meningiomas, 3 with 2 operations and 2 with 3 operations before octreotide therapy. Only 1 patient had disease progression, and that occurred 60 months after initiation of octreotide therapy.

While tumor regression is uncommon with octreotide therapy, it was observed in our patient and also in a study by García-Luna et al. Shrinkage may be attributable to mechanisms external to meningioma receptors, such as inhibition of angiogenesis or reduction in edema.

A study by Johnson et al. demonstrated growth despite treatment with octreotide. In a sample of 11 patients, only 2 had long-term suppression of disease. Poor response could be related to the aggressive nature of the meningiomas in this group (that is, 5 with anaplastic meningiomas and 2 with atypical meningiomas). Chamberlain et al. had more promising results, with 44% of patients in a group of 16 demonstrating disease-free progression at 6 months.

Ironically, some in vitro studies have demonstrated inverse effects of octreotide, leading to an increased size of meningiomas after treatment.

The spectrum of octreotide effects in the treatment of recurrent meningiomas in the various studies begs the question, is this an effect at the receptor level? Possibilities include receptor inactivity and lack of octreotide affinity for specific receptors. Five subtypes of octreotide have been identified (somatostatin receptor [SST]1–5) with 2 isoforms of SST2 (SST2A and SST2B). The presence of different subtypes and the use of synthetic octreotide has certain implications. The first may relate to the drug’s affinity for the receptors. SST2, SST3, and SST5 have higher binding of analogs. The next variable may be the differ-
ent intracellular pathways thought to be required for the positive clinical effects of octreotide.15 16 SST\textsubscript{2} has antiproliferative effects using tyrosine pathways, while SST\textsubscript{1} is antiapoptotic through p53.1,16 Finally, the quantity of mechanisms that are still unclear.

Our patient’s prolonged remission suggests that the use of octreotide has had an impact over the last 3.5 years in delaying the recurrence of meningioma—the longest interval with no growth since 2002. Given the apparent effects of octreotide in our case, it is possible that the tumor expresses the necessary receptor subtype required for octreotide to be clinically effective. However, the encouraging outcome could also be the result of the additive effect of multiple prior therapies, but we believe that is unlikely given the time between treatments. Although the results in our patient are encouraging, further clinical, radiographic, and laboratory follow-up are warranted.

Conclusions

Our patient’s prolonged remission suggests that the use of octreotide has had an impact over the last 3.5 years in delaying the recurrence of meningioma—the longest interval with no growth since 2002. Given the apparent effects of octreotide in our case, it is possible that the tumor expresses the necessary receptor subtype required for octreotide to be clinically effective. However, the encouraging outcome could also be the result of the additive effect of multiple prior therapies, but we believe that is unlikely given the time between treatments. Although the results in our patient are encouraging, further clinical, radiographic, and laboratory follow-up are warranted.

References