Quantitative fluorescence using 5-aminolevulinic acid–induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery

Pablo A. Valdés, MD, PhD,1,4 Valérie Jacobs, MD, PhD,2,5 Brent T. Harris, MD, PhD,6 Brian C. Wilson, PhD,7 Frederic Leblond, PhD,8 Keith D. Paulsen, PhD,4 and David W. Roberts, MD2,3

1Department of Neurosurgery, Brigham and Women’s/Boston Children’s Hospitals, Harvard Medical School; 2Department of Neurology, Boston Children’s Hospital, Boston, Massachusetts; 3Geisel School of Medicine at Dartmouth, Hanover; 4Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon; 5Thayer School of Engineering, Hanover, New Hampshire; 6Georgetown University Medical Center, Washington, DC; 7Ontario Cancer Institute, University of Toronto, Ontario; and 8Department of Engineering Physics, Polytechnique Montreal, Quebec, Canada

OBJECT Previous studies in high-grade gliomas (HGGs) have indicated that protoporphyrin IX (PpIX) accumulates in higher concentrations in tumor tissue, and, when used to guide surgery, it has enabled improved resection leading to increased progression-free survival. Despite the benefits of complete resection and the advances in fluorescence-guided surgery, few studies have investigated the use of PpiX in low-grade gliomas (LGGs). Here, the authors describe their initial experience with 5-aminolevulinic acid (ALA)–induced PpIX fluorescence in a series of patients with LGG.

METHODS Twelve patients with presumed LGGs underwent resection of their tumors after receiving 20 mg/kg of ALA approximately 3 hours prior to surgery under an institutional review board–approved protocol. Intraoperative assessments of the resulting PpIX emissions using both qualitative, visible fluorescence and quantitative measurements of PpIX concentration were obtained from tissue locations that were subsequently biopsied and evaluated histopathologically. Mixed models for random effects and receiver operating characteristic curve analysis for diagnostic performance were performed on the fluorescence data relative to the gold-standard histopathology.

RESULTS Five of the 12 LGGs (1 ganglioglioma, 1 oligoastrocytoma, 1 pleomorphic xanthoastrocytoma, 1 oligodendroglioma, and 1 ependymoma) demonstrated at least 1 instance of visible fluorescence during surgery. Visible fluorescence evaluated on a specimen-by-specimen basis yielded a diagnostic accuracy of 38.0% (cutoff threshold: visible fluorescence score ≥ 1; area under the curve = 0.514). Quantitative fluorescence yielded a diagnostic accuracy of 67% (for a cutoff threshold of the concentration of PpIX [C_{ppix}] > 0.0056 μg/ml, area under the curve = 0.66). The authors found that 45% (9/20) of nonvisibly fluorescent tumor specimens, which would have otherwise gone undetected, accumulated diagnostically significant levels of C_{ppix} that were detected quantitatively.

CONCLUSIONS The authors’ initial experience with ALA-induced PpIX fluorescence in LGGs concurs with other literature reports that the resulting visual fluorescence has poor diagnostic accuracy. However, the authors also found that diagnostically significant levels of C_{ppix} do accumulate in LGGs, and the resulting fluorescence emissions are very often below the detection threshold of current visual fluorescence imaging methods. Indeed, at least in the authors’ initial experience reported here, if quantitative detection methods are deployed, the diagnostic performance of ALA-induced PpIX fluorescence in LGGs approaches the accuracy associated with visual fluorescence in HGGs.

KEY WORDS low-grade glioma; fluorescence-guided surgery; protoporphyrin IX; 5-aminolevulinic acid; optical spectroscopy; quantitative fluorescence; brain tumor; biomedical optics; oncology

ABBREVIATIONS ALA = 5-aminolevulinic acid; AUC = area under the curve; C_{ppix} = concentration of PpIX; HGG = high-grade glioma; LGG = low-grade glioma; NPV = negative predictive value; PpIX = protoporphyrin IX; PPV = positive predictive value; ROC = receiver operating characteristic.

SUBMITTED April 12, 2014. ACCEPTED December 12, 2014.

INCLUDE WHEN CITING Published online July 3, 2015; DOI: 10.3171/2014.12.JNS14391.

DISCLOSURE This work was supported in part by NIH grant R01NS052274-04 (D.W.R.) awarded by the National Institute of Neurological Disorders and Stroke and K25CA138578 (F.L.) awarded by the National Cancer Institute. Carl Zeiss (Carl Zeiss Surgical GmbH) and Medtronic Navigation (Medtronic) provided the fluorescence-enabled OPMI Pentero operating microscope and StealthStation Treon navigation system, respectively. DUSA Pharmaceuticals (DUSA Pharmaceuticals) supplied the ALA. Dr. Roberts served as a consultant for Medtronic Think Tanks (2012), for Zeiss Think Tanks (2012 and 2013), for a Scientific Advisory Board for an unrelated Alcyone study, for a Scientific Advisory Board for an unrelated IMRIS/SYMBIS study, for Zeiss’s Neurosurgery Advisory Board, and on the Data Monitoring Committee for an unrelated Medtronic deep brain stimulation study. Drs. Valdés, Wilson, Leblond, Paulsen, and Roberts have multiple patent applications on several aspects of the quantitative fluorescence technologies discussed in this study. Dr. Paulsen is a patent holder with Dartmouth.
gliomas account for more than 70% of all primary brain tumors. Low-grade gliomas (LGGs) in particular (WHO Grades I and II) account for a variety of subtypes based on histological appearance, including diffuse astrocytomas, pilocytic astrocytomas, oligodendrogliomas, gangliogliomas, and oligoastrocytomas. Retrospective studies of long-term data suggest that gross-total resection is associated with significantly improved progression-free and overall survival within this population. In some instances of LGGs, complete resection can even be curative in these patients.

Tumor biomarkers that can be detected during intraoperative procedures hold promise for assisting and enabling further extent of resection. Specifically, several clinical trials have considered protoporphyrin IX (PpIX)—an endogenous fluorescent biomarker that can be visually detected under violet-blue light excitation following exogenous administration of 5-aminolevulinic acid (ALA)—for fluorescence-guided resection. Importantly, the use of ALA-induced PpIX has improved complete resection and has led to statistically significant increases in progression-free survival in a randomized, controlled Phase III clinical trial of high-grade gliomas (HGGs).

Despite these positive outcomes in HGGs, early experience with ALA-induced PpIX fluorescence in LGGs has been much more negative because these tumors have not been nearly as visually fluorescent as their HGG counterparts. However, the vast majority of clinical studies on fluorescence-guided neurosurgery have only considered the qualitative, visible PpIX emissions. In these investigations, a surgical microscope modified for fluorescence imaging is typically deployed and provides a violet-blue light excitation mode (λ = 405–720 nm) with fluorescence collection via a long-pass filter (λ = 450–720 nm). The emitted red-pink fluorescence (λ = 610–720 nm) is visualized through the surgical oculars or by image collection on a color camera integrated with the optics of the surgical microscope as an aid to identifying tumor for making resection decisions.

We recently reported that significant levels of PpIX can be measured in a variety of brain tumor histologies, including LGGs, with an intraoperative probe that determines the actual PpIX concentration (C_{PpIX}) in tissue from the fluorescence signal, even when no visual fluorescence is evident. This method provides an objective measurement of tissue fluorescence that minimizes distortions caused by tissue optical properties and separates contributions from tissue autofluorescence, thereby reducing the subjectivity introduced by the observer’s (i.e., the surgeon’s) visual perception. In this paper, we summarize our initial experience with ALA-induced PpIX fluorescence in LGGs and compare our early findings to others in the literature. Specifically, we show that our results with visual PpIX fluorescence are very consistent with those of others in that very little, if any, visual fluorescence occurs in LGGs. Importantly, however, we also show that diagnostically significant concentrations of PpIX are routinely found in nonvisibly fluorescent LGGs, which suggests that diagnostic accuracies comparable to those observed with state-of-the-art visible fluorescence imaging in HGGs may be possible, when quantitative methods are used to assess the surgical field.

Methods

Study Characteristics

Patient data analyzed in this study were collected as part of a broader enrollment of patients with a variety of tumor histologies. The protocol was approved by the institutional review board at Dartmouth, which oversees the participation of human subjects in research, and all participants signed an informed consent form. An oral dose of ALA (DUSA Pharmaceuticals) was prepared by dissolving 20 mg/kg in 100 ml of water and was administered approximately 3 hours prior to induction of anesthesia. Preoperative, high-resolution, contrast-enhanced T1-weighted or T2-weighted axial MR images were acquired and used for image-guided neuronavigation during each case.

Surgical Procedure

Patients were positioned in secure 3-point fixation. A StealthStation Treon image-guidance system (Medtronic) provided the neuronavigation following standard practice. A Zeiss OPMI Pentero surgical microscope (Carl Zeiss Surgical GmbH) modified for excitation and visualization of PpIX fluorescence (i.e., having the BLUE 400 fluorescence imaging module) was also tracked and preoperative MRI was coregistered with the surgical field through scalp fiducials.

Resection was carried out following standard microsurgical technique. Typically, the surgeon alternated between white and violet-blue light-emitting modes to visualize fluorescence during the resection. Biopsy specimens were collected at various times during the case in regions displaying both PpIX-positive and PpIX-negative visual fluorescence within the preoperatively planned resection volume.

In some cases and when available, the surgeon placed an intraoperative probe on the tissue to be biopsied, and quantitative C_{PpIX} measurements were recorded in triplicate and averaged. Control data were acquired from normal cortex that did not undergo resection during these procedures. The biopsied site was also assigned a qualitative visible fluorescence score from 0 to 3 as described previously (0, no fluorescence; 1 minimal fluorescence; 2, moderate fluorescence; and 3, high fluorescence) based on the impression of the surgeon who was blinded to the quantitative probe results. Then, tissue specimens were placed in formalin for subsequent histopathological analysis. Resection was continued until the surgeon judged that no more tissue could be safely removed. Postoperatively, all patients underwent serial liver function tests to monitor possible changes in liver function, and skin photosensitivity precautions were followed as per protocol.

Intraoperative Probe

The intraoperative probe for in vivo measurement of C_{PpIX} was used as described previously. Briefly, it consists of 4 fiberoptic cables arranged linearly and encased in a stainless steel housing approximately 1.1 mm in outer...
diameter. The fiberoptic cables included 1 channel for light collection, which was connected to a subnanometer resolution spectrometer, 2 channels for white light illumination at different distances from the detector fiber, and 1 channel for 405-nm light illumination. A light transport algorithm was applied to the white light data to calculate the tissue optical properties explicitly—information that corrects the raw fluorescence signal for variations caused by tissue light scattering and absorption. The attenuation correction enables quantitative values of \(C_{\text{PpIX}} \) to be estimated by accounting for the nonlinear, attenuating effects caused by varying tissue optical properties at the measurement locations.16,49

Pathology
A histopathological analysis of formalin-fixed, paraffin-embedded tissue was performed by a neuropathologist (B.T.H.) who was blinded to the quantitative and qualitative fluorescence data. Biopsy specimens were classified based on WHO grading criteria, and results were tabulated by matching each specimen with its corresponding histopathological evaluation, qualitative visual fluorescence score, and quantitative fluorescence (i.e., \(C_{\text{PpIX}} \)) characteristics acquired with the probe.26

Data and Statistical Analysis
Data processing was performed using MATLAB software (Version R2011b, The MathWorks, Inc.). Statistical analysis was conducted using Stata (version 12.0, StataCorp) where the 2-sided significance level was set at \(p < 0.05 \). Mixed models with random effects for each individual were used to accommodate the acquisition of multiple samples per patient.8 Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic performance of both qualitative and quantitative fluorescence as described previously.9,32

Results
Patient Characteristics
Study data were collected from 12 consecutive patients with LGGs (WHO Grades I and II) in our original institutional review board, which included 2 oligodendrogliomas, 2 gangliogliomas, 1 ependymoma, 3 dysembryoplastic neuroepithelial tumors (DNETs), 3 oligoastrocytomas, and 1 pleomorphic xanthoastrocytoma as summarized in Table 1. Of these 12 LGGs, 1 pleomorphic xanthoastrocytoma, 1 oligoastrocytoma, 1 ganglioglioma, 1 oligodendroglioma, and 1 ependymoma (5/12 or 42%) demonstrated some degree of positive visual fluorescence in the operating room (Table 1).

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Histology</th>
<th>Probe</th>
<th>Quantitative Fluorescence</th>
<th>Visual Fluorescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DNBT</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>2</td>
<td>DNBT</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>3</td>
<td>Ganglioglioma</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>4</td>
<td>DNBT</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>5</td>
<td>Ganglioglioma</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>WHO II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Pleomorphic xanthoastrocytoma</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Oligoastrocytoma</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Oligoastrocytoma</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>9</td>
<td>Oligodendroglioma</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Oligodendroglioma</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>11</td>
<td>Oligoastrocytoma</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>12</td>
<td>Ependymoma</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

\(+ \) = positive; \(−\) = negative.

Qualitative and Quantitative Fluorescence
Assessment of Intraoperative Qualitative, Visible Fluorescence
Seventy-three biopsy specimens were collected from the 12 patients with LGG (range 1–11 specimens per patient) where the tissue (prebiopsy) was evaluated for its visual fluorescence characteristics. In terms of visible fluorescence, 82% (58/73) of the tissue locations sampled were negative (i.e., visible fluorescence score of 0). In tissue samples histologically graded as nontumor, 19% (4/21) exhibited visible fluorescence (all 4 samples with a visual fluorescence score of 2; false positive) and 81% (17/21) were negative for visible fluorescence (visible fluorescence score of 0; true negative). In tumor samples, 79% (41/52) did not exhibit visible fluorescence (visible fluorescence score of 0; false negative) and 21% (11/52) were positive for visible fluorescence (visible fluorescence score > 0; true positive).

Relationship Between Intraoperative Visible Fluorescence and \(C_{\text{PpIX}} \)
In 6 of the 12 surgeries, the intraoperative probe was available for data collection, and 36 tissue locations were sampled. From this information, relationships between visual and nonvisual fluorescence and \(C_{\text{PpIX}} \) for specimens histologically graded as positive and negative for tumor were constructed as shown in Fig. 1. Visually, 86% (31/36) of the tissue locations that were sampled did not demonstrate fluorescence. In tissue sites categorized as nontumor, 8.3% (1/12) exhibited visible fluorescence. In those specimens histologically graded as tumor, 83% (20/24) were not visibly fluorescent. The oligoastrocytoma, oligodendroglia, and ganglioglioma cases with positive visible fluorescence were more heterogeneous (in terms of visible fluorescence) relative to their ependymoma and pleomorphic xanthoastrocytoma counterparts, which exhibited a brighter, more homogeneous, visible fluorescence within the tumor bulk. Figure 2 presents an overview of the individual measurements across the various LGG histologies.

In this study, nonvisibly fluorescent tissue presented with a median \(C_{\text{PpIX}} \) of 0.004 \(\mu \)g/ml (minimum: 0.000 \(\mu \)g/ml; 25th percentile: 0.000 \(\mu \)g/ml; 75th percentile: 0.022 \(\mu \)g/ml; maximum: 0.205 \(\mu \)g/ml) and mean \(C_{\text{PpIX}} \) of 0.034 \(\mu \)g/ml (SD 0.064 \(\mu \)g/ml), whereas visibly fluorescent tissue produced a median \(C_{\text{PpIX}} \) of 3.161 \(\mu \)g/ml (minimum: 0.000 \(\mu \)g/ml;
0.356 µg/ml; 25th percentile: 0.461 µg/ml; 75th percentile: 6.930 µg/ml; maximum: 10.540 µg/ml) and mean CPpIX of 0.766 µg/ml (SD 2.268 µg/ml) (Table 2). The data exhibited a large dynamic range between 0.000 and 10.5 µg/ml.

Diagnostic Analysis of Qualitative and Quantitative Fluorescence in LGG Subtypes

As summarized in Table 3, ROC analysis of all 12 LGGs (n = 12) based on visible fluorescence yielded a diagnostic accuracy of 38% (cutoff threshold: visible fluorescence score of ≥ 1, area under the curve [AUC] of 0.52), sensitivity of 21%, negative predictive value (NPV) of 29%, specificity of 81%, and positive predictive value (PPV) of 73%. A corresponding analysis of quantitative fluorescence measured with the probe yielded a diagnostic accuracy of 67% (cutoff threshold of 0.0057 µg/ml, AUC of 0.663), sensitivity of 58%, NPV of 50%, specificity of 83%, and PPV of 87%.

Figure 3 illustrates the advantages of quantitative versus visual fluorescence in the 2 cases of oligoastrocytomas, which presented with different visible fluorescence characteristics. First, the results indicate that tumor tissue can accumulate 10–1000 times more CPpIX than normal cortex (Fig. 3A–D). Two instances of nonvisibly fluorescent tumor tissue—one in the bulk mass (Fig. 3E–H) and the other at the margin (Fig. 3I–L)—appear in Fig. 3. The latter case of histopathologically confirmed tumor accumulated approximately 150 times more CPpIX than normal cortex and identified tumor outside the border of the preoperative T2 MRI signal abnormality in the image-guided view. Figure 3M–O shows a case of oligoastrocytoma where visible fluorescence was present within the tumor bulk and outside the region of contrast enhancement, suggesting, again, the complementary value of PpIX fluorescence for guiding resection decisions.

Discussion

Most studies to date have empirically concluded that significant levels of PpIX accumulate in HGGs because...
the fluorescence emissions caused by blue light exposure are visible during these resections. This experience culminated in a randomized Phase III clinical trial in Europe, which demonstrated that fluorescence-guided surgery essentially doubled the rate of complete resection relative to white light surgical guidance alone.

In this study, we compared our initial experience with visual and quantitative fluorescence in LGGs because of the limited literature that exists and the general consensus within the neurosurgical community that PpIX is not a useful biomarker for fluorescence guidance in LGG resection. Table 4 summarizes the literature associated with ALA-induced PpIX fluorescence in primary LGGs (WHO Grade I and II) from 13 studies involving 90 patients. The reported histologies included astrocytoma, oligodendroglioma, oligoastrocytoma, dys-embryoplastic neuroepithelial tumor, pilocytic astrocytoma, pleomorphic xanthoastrocytoma, gangliogioma, and otherwise unspecified WHO Grade I or II tumors. In these data, 16% of the cases (14/90 cases) showed at least 1 instance of intraoperative visible fluorescence. No visible fluorescence was reported in all 15 WHO Grade I cases. In the WHO Grade II histologies, 19% (14/75) demonstrated visible fluorescence and consisted of 15% of astrocytomas (WHO Grade II) (8/52), 21% (3/14) of oligoastrocytomas, 25% (2/8) of oligodendrogliomas, and 100% (1/1) of pleomorphic xanthoastrocytomas. Two studies involving a contact optical spectroscopy probe reported by Utsuki et al. and Montcel et al. did not elaborate in detail on the tumor histologies and visible levels of intraoperative PpIX fluorescence that were found in a total of 6 and 2 cases, respectively, and as a result these data were not included in this analysis of the literature. In cases in which visible fluorescence was observed during LGG surgery, the literature reports did not describe the proportion of locations and samples that exhibited visible fluorescence; some studies consisted of surgical biopsy cases and only discussed 1 or 2 specimens (e.g., Ewelt et al., Floeth et al., and Widholm et al.22). The available literature indicates that only a small percentage of LGGs (16% for all LGGs, 0.0% of WHO Grade I, and 19% of WHO Grade II) demonstrate any intraoperative visible fluorescence, which is consistent with our experience and the view that ALA-induced PpIX fluorescence is not a viable biomarker for LGG surgical guidance when using visual techniques—either the naked eye or current state-of-the-art visible fluorescence technologies (e.g., Zeiss Pentero BLUE 400).

Sanai et al. described the use of an intraoperative confocal microscope probe for microscopic visualization of PpIX in LGGs. They reported no visible fluorescence in their experience (Table 4), but the confocal microscopy probe detected PpIX in LGGs on a cellular level. This method does not offer a quantitative approach to fluorescence-guided surgery per se, but the imaging does improve sensitivity to PpIX in LGGs and allows a subjective assessment of the confocal images. Utsuki et al. described application of a spectroscopy system through which they found significant signal in a subset of LGGs by identifying a PpIX peak at 636 nm. Studies have reported levels of PpIX in tumor tissue using ex vivo techniques. For example, we published an ex vivo fluorimetry method to measure absolute PpIX levels in tumor specimens with WHO Grade I–IV gliomas and found that approximately 40% of tumor-positive biopsy sites that were not visibly fluorescent had C_{PpIX} > 0.100 µg/ml, including significant C_{PpIX} levels in both visibly and nonvisibly fluorescent LGGs.

In a prior study we first described the use of the quantitative probe on a variety of tumor histologies, including LGGs and HGGs, meningiomas, and metastases. We showed that across these various tumor types, diagnostic levels of PpIX could be quantitatively measured in both visibly and nonvisibly fluorescent tumor. In contrast to the present study, in the earlier work we looked at a variety of tumor types and only 2 LGG cases. Here, we present our experience exclusively on 12 LGGs and provide a specific analysis of our experience comparing results using both visible and quantitative fluorescence techniques. This work provides evidence that a quantitative technique for PpIX fluorescence guidance may enhance the surgeon’s ability to detect tumor tissue beyond what is currently capable with visible fluorescence techniques.

The study reported here, 5 of 12 LGGs (1 gangliogi-
oma, 1 oligoastrocytoma, 1 pleomorphic xanthoastrocytoma, 1 oligodendroglioma, and 1 ependymoma) included at least 1 site of visible fluorescence during surgery, which is consistent with the data in the literature (Table 4), suggesting that the minority of LGGs accumulate sufficient levels of PpIX to overcome the attenuating effects of tissue optical properties and enable visualization of the fluorescence. The low diagnostic accuracy is mainly the result of the low sensitivities and low NPVs (sensitivity of 21%, NPV of 29%; Table 3) derived from the data.

In the tissue samples from the 6 LGGs that underwent evaluation with both visible and quantitative fluorescence techniques, C_{PpIX} in normal cortex was approximately 0.001 µg/ml, whereas 45% (9/20) of the nonvisibly fluorescent tumor specimens accumulated C_{PpIX} levels greater than 0.0056 µg/ml (the cutoff value used in the ROC analysis), suggesting that a sizable fraction of LGGs is likely to accumulate significant levels of C_{PpIX} (approximately 10–1000 times more than normal brain tissue) that are not visibly fluorescent.
In an analysis of diagnostic performance across all LGG subtypes combined, quantitative fluorescence demonstrated a diagnostic accuracy of 67% (cutoff threshold of 0.0056 μg/ml, AUC of 0.663) with improved sensitivity and NPV (sensitivity of 58%, NPV of 50%) as well as specificity and PPV (specificity of 83% and PPV of 87%) compared with visible fluorescence (Table 3). Interestingly, the diagnostic performance of quantitative fluorescence in this small cohort of LGG patients is approaching that reported in the literature for qualitative, visible fluorescence in HGGs when a modified surgical microscope for fluorescence imaging is deployed.

Recently, spectroscopic probes have received increased attention as tools for intraoperative fluorescence identification. Spectroscopic analysis allows positive identification of the typical PpIX fluorescence spectrum with its major peak at 635 nm and a second minor peak at 710 nm, and enables improved detection of diagnostic significant levels of PpIX (i.e., above autofluorescence) in tissues that do not demonstrate visible fluorescence. Spectroscopic probes increase sensitivity primarily by improving the efficiency of light excitation and detection relative to wide-field fluorescence imaging. However, an important distinction should be drawn between these spectroscopic probe studies and the present work, in that most published reports use the “raw” fluorescence signal to infer the diagnostic performance of the fluorophore. Although these probes may offer more sensitivity to PpIX fluorescence than the visual wide-field imaging that is commercially available through the fluorescence-adapted operating microscope, these probe measurements are semiquantitative and do not account for the variable attenuation caused by tissue optical properties on the detected fluorescence, and therefore, do not calculate the absolute fluorescent biomarker concentrations. In the case of quantitative methods (e.g., the quantitative probe used here), the absolute fluorophore concentration is obtained, such that the ROC curves and diagnostic thresholds are absolute and observer or spectroscopy probe independent.

Low-grade gliomas are often grouped together based on their treatment management and prognosis; yet, they represent a variety of pathological and molecular phenotypes. Given expected variations in tumor biology and histopathology and our findings of some variation in C_pPpIX across the LGG subtypes evaluated here (Fig. 2), the diagnostic

<table>
<thead>
<tr>
<th>Grade & Tumor Histology</th>
<th>Total</th>
<th>(+) vFI</th>
<th>(−) vFI</th>
<th>Authors & Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHO I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Marbacher et al., 2014</td>
</tr>
<tr>
<td>DNET</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Valdés et al., 2011</td>
</tr>
<tr>
<td>Ganglioglioma</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Valdés et al., 2011</td>
</tr>
<tr>
<td>Pilocytic astrocytoma</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>Beez et al., 2014</td>
</tr>
<tr>
<td>DNET</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Sanai et al., 2011</td>
</tr>
<tr>
<td>WHO II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>12</td>
<td>5</td>
<td>7</td>
<td>Marbacher et al., 2014</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>Ewelt et al., 2011</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>Widhalm et al., 2010</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>14</td>
<td>1</td>
<td>13</td>
<td>Floeth et al., 2011</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Stockhammer et al., 2009</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>Ishihara et al., 2007</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>Hefti et al., 2008</td>
</tr>
<tr>
<td>Astrocytoma</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>Sanai et al., 2011</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Valdés et al., 2012</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>Marbacher et al., 2014</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>Valdés et al., 2011</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Ewelt et al., 2011</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Widhalm et al., 2010</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>Floeth et al., 2011</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Sanai et al., 2011</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>Marbacher et al., 2014</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Ewelt et al., 2011</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Widhalm et al., 2010</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>Sanai et al., 2011</td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Floeth et al., 2011</td>
</tr>
<tr>
<td>Pleomorphic xanthoastrocytoma</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Ruge & Liu, 2009</td>
</tr>
</tbody>
</table>
performance of C_{PpIX} is likely to vary by LGG subtype. This result suggests the development of more specific biomarkers is needed that would target these tumor histopathologies explicitly.

Here, we present our experience using quantitative fluorescence in a small cohort of LGGs, noting that a more sensitive and quantitative approach can provide improved diagnostic capabilities and overall surgical guidance for the resection of LGGs. More specifically, we were able to detect diagnostically significant quantitative concentrations of PpIX in nonvisibly fluorescent tumor tissue, which was $10-100$ times greater than that in normal parenchyma. This report further elucidates a technique that provides the community with a means for improved detection of nonenhancing, nonvisibly fluorescent, e.g., negative on the Zeiss Pentero microscope, LGG tissue using PpIX as a tumor biomarker. Second, we also present an overview of the available literature using PpIX as a biomarker for LGGs. We note the limited diagnostic value of current visible PpIX fluorescence imaging and as such, recommend a need for a more sensitive technique.

In the context of supramarginal resection and/or functional imaging, this tool would provide the surgeon with additional information regarding the presence of tumor tissue within the grossly abnormal MRI regions (e.g., T2-weighted abnormality) as well as of infiltrative disease that may not be clearly delineated on MRI. This additional information would help guide decision making, maximize resection of infiltrative disease, and minimize damage to normal parenchyma. This technique could serve as an added tool in the neurosurgical armamentarium for resection of LGGs.

A limitation of this study is the small number of patients (12) with LGGs that have been evaluated. We are currently recruiting more patients to further note the extent to which PpIX can serve as a biomarker in LGGs. Overall, the results are consistent with our previous data, which have demonstrated significant accumulation of PpIX across a range of tumor histologies, and the detection of nonvisibly fluorescent levels of C_{PpIX} ($>0.0056 \mu g/ml$) in tumor tissues, and specifically in LGGs. The low number and variety of LGG subtypes presented here should encourage future studies of PpIX as a fluorescent biomarker in LGGs with more sensitive and quantitative methods. Nevertheless, the results are significant because they counter the current opinion that PpIX does not accumulate in diagnostically significant concentrations in LGGs. Additionally, the biological reasons why some of the LGG cases evaluated here have such low levels of PpIX (that go undetected even with the quantitative spectroscopic probe) is unclear. The present study is also limited by the contact point probe that interrogates a small region of tissue (approximately 1 mm in diameter). In terms of future developments, we have recently reported a quantitative imaging system that enables real-time, highly sensitive measurements of C_{PpIX} across the full surgical field of view with a diagnostic performance that is comparable in accuracy and sensitivity to the quantitative intraoperative probe readings. These results support the need for more accurate and quantitative technologies for PpIX detection. The new quantitative imaging system translates the principles demonstrated in this study using the quantitative probe to a full imaging setup, with further studies needed to validate its utility in the neurosurgical operating room. We have also found that the incorporation of additional biomarkers (e.g., oxy- and deoxy-hemoglobin and oxygen saturation) predictive of tissue histopathological processes (e.g., vascular density/angiogenesis and oxygenation/hypoxia) associated with tumor leads to improved diagnostic performance when combined with C_{PpIX} and this multiparametric approach warrants further investigation.

Conclusions

Here, we present our initial experience with ALA-induced PpIX fluorescence in a series of 12 LGGs and compare the diagnostic performance of visual and quantitative fluorescence. The quantitative fluorescence data suggest that low, but diagnostically significant, levels of PpIX do accumulate in LGGs that are below the detection threshold of current visual fluorescence techniques. These results are potentially of great importance because an increased extent of resection in LGGs is more likely to have a substantial impact on patient survival relative to their HGG counterparts. This experience provides evidence that ALA-induced PpIX fluorescence-guided surgery may not be limited to HGGs provided that quantitative fluorescence methods are applied, and efforts to develop the requisite wide-field imaging technology should be pursued accordingly.

Acknowledgment

We thank Dr. Neda Haj-Hosseini for useful comments on our paper.

References

9. Fitzmaurice M: Principles and pitfalls of diagnostic test de-
5-ALA–induced PpIX fluorescence in low-grade gliomas

Author Contributions

Conception and design: Valdés, Wilson, Paulsen, Roberts. Acquisition of data: Valdés, Harris, Roberts. Analysis and interpretation of data: Valdés, Jacobs, Paulsen, Roberts. Drafting the article: Valdés, Jacobs. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Valdés. Statistical analysis: Valdés, Jacobs. Administrative/technical/material support: Wilson, Leblond, Paulsen, Roberts. Study supervision: Valdés, Paulsen, Roberts.

Correspondence

Pablo A. Valdés, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., AB-136, Boston, MA 02115. email: pvaldesquevedo@partners.org.