Analysis of subarachnoid hemorrhage using the Nationwide Inpatient Sample: the NIS-SAH Severity Score and Outcome Measure

Clinical article

CHAD W. WASHINGTON, M.D., M.S., M.P.H.S.,1,3 COLIN P. DERDEYN, M.D.,2,3 RALPH G. DACEY JR., M.D.,1 RAJAT DIHAR, M.D.,3 and GREGORY J. ZIPFEL, M.D.1,3

Departments of 1Neurological Surgery, 2Radiology, and 3Neurology, Washington University in St. Louis, Missouri

Object. Studies using the Nationwide Inpatient Sample (NIS), a large ICD-9–based (International Classification of Diseases, Ninth Revision) administrative database, to analyze aneurysmal subarachnoid hemorrhage (SAH) have been limited by an inability to control for SAH severity and the use of unverified outcome measures. To address these limitations, the authors developed and validated a surrogate marker for SAH severity, the NIS-SAH Severity Score (NIS-SSS; akin to Hunt and Hess [HH] grade), and a dichotomous measure of SAH outcome, the NIS-SAH Outcome Measure (NIS-SOM; akin to modified Rankin Scale [mRS] score).

Methods. Three separate and distinct patient cohorts were used to define and then validate the NIS-SSS and NIS-SOM. A cohort (n = 148,958, the “model population”) derived from the 1998–2009 NIS was used for developing the NIS-SSS and NIS-SOM models. Diagnoses most likely reflective of SAH severity were entered into a regression model predicting poor outcome; model coefficients of significant factors were used to generate the NIS-SSS. Nationwide Inpatient Sample codes most likely to reflect a poor outcome (for example, discharge disposition, tracheostomy) were used to create the NIS-SOM.

Data from 716 patients with SAH (the “validation population”) treated at the authors’ institution were used to validate the NIS-SSS and NIS-SOM against HH grade and mRS score, respectively.

Lastly, 147,395 patients (the “assessment population”) from the 1998–2009 NIS, independent of the model population, were used to assess performance of the NIS-SSS in predicting outcome. The ability of the NIS-SSS to predict outcome was compared with other common measures of disease severity (All Patient Refined Diagnosis Related Group [APR-DRG], All Payer Severity-adjusted DRG [APS-DRG], and DRG).

Results. The NIS-SSS significantly correlated with HH grade, and there was no statistical difference between the abilities of the NIS-SSS and HH grade to predict mRS-based outcomes. As compared with the APR-DRG, APS-DRG, and DRG, the NIS-SSS was more accurate in predicting SAH outcome (area under the curve [AUC] = 0.69, 0.71, 0.71, and 0.79, respectively).

A strong correlation between NIS-SOM and mRS was found, with an agreement and kappa statistic of 85% and 0.63, respectively, when poor outcome was defined by an mRS score > 2 and 95% and 0.84 when poor outcome was defined by an mRS score > 3.

Conclusions. Data in this study indicate that in the analysis of NIS data sets, the NIS-SSS is a valid measure of SAH severity that outperforms previous measures of disease severity and that the NIS-SOM is a valid measure of SAH outcome. It is critically important that outcomes research in SAH using administrative data sets incorporate the NIS-SSS and NIS-SOM to adjust for neurology-specific disease severity.

Key Words • subarachnoid hemorrhage • aneurysm • skull base • Nationwide Inpatient Sample • Hunt and Hess grade • vascular disorders • modified Rankin Scale score

Abbreviations used in this paper: AHRQ = Agency for Healthcare Research and Quality; APR-DRG = All Patient Refined Diagnosis Related Group; APS-DRG = All Payer Severity-adjusted DRG; AUC = area under the curve; CCI = Charlson Comorbidity Index; HH = Hunt and Hess; ICD-9-CM = International Classification of Diseases, Ninth Revision, Clinical Modification; mRS = modified Rankin Scale; NIS = Nationwide Inpatient Sample; NIH-SOM = NIH-SAH Outcome Measure; NIH-SSS = NIH-SAH Severity Score; ROC = receiver operating characteristic; SAH = subarachnoid hemorrhage; WFNS = World Federation of Neurosurgical Societies.
Analysis of SAH in the NIS: NIS-SSS and NIS-SOM

tal charges, length of stay, discharge status, and hospital characteristics. The NIS collects information on hospital stays from more than 1000 hospitals, representing 20% of all United States community-based inpatient health care facilities (http://www.hcup-us.ahrq.gov/nisoverview.jsp). These data hold great potential for evaluating variables that impact health care outcomes across broad populations.

Aneurysmal subarachnoid hemorrhage (SAH) is a heterogeneous disease complicated by poor outcomes and is uncommon enough that adequately sized studies require large multicenter cohorts. To date, more than 20 studies have used data from the NIS to examine a variety of important questions regarding SAH.3,6,8,9,12–14,20,23–25,29–31,34,35,37,42–44,46,51,53 However, all of these analyses suffer from a critical limitation: neurological status was not controlled for when comparing outcomes across patients and cohorts. This limitation results from the absence of direct measures of SAH severity in the NIS data and can be significant given that SAH severity (for example, Hunt and Hess [HH] grade26) is one of the most important determinants of patient outcome after SAH.26,47,38 Instead, investigators have used nonspecific indicators of comorbidity and disease severity to adjust patient analyses.3,6,8,9,12–14,20,23–25,29–31,34,35,37,42–44,46,51,53 Another significant limitation of past NIS-based studies of SAH is that the applied outcome measures have not been validated for this condition and have relied solely on the discharge disposition of the patient, with discharge home being a “good” outcome and all other discharges being “poor.” These critical methodological limitations have very likely curbed the clinical relevance of conclusions drawn from the NIS-based SAH studies. While the NIS supplies data for large-scale SAH research, it is imperative that disease-specific severity adjustment and outcome measures are developed to permit appropriate statistical analysis and meaningful clinical interpretation.

The hypothesis of the present study was that information exists within the NIS database that allows for the calculation of an SAH severity score (akin to the HH grade) and an SAH outcome measure (akin to the modified Rankin Scale [mRS] score28). Specifically, our objectives were to 1) develop the NIS-SAH Severity Score (NIS-SSS) and the NIS-SAH Outcome Measure (NIS-SOM) based on data available in the NIS, 2) validate the NIS-SSS and NIS-SOM against established SAH grading systems (HH classification and mRS, respectively) based on data from a cohort of SAH patients from our institution, and 3) compare the performance of the NIS-SSS and NIS-SOM against previously used methods for controlling for disease severity in the NIS.

Methods

Patient Population

To ensure the highest statistical fidelity possible, three separate patient cohorts were used to define and then validate the NIS-SOM and the NIS-SSS. A separate population was used for each portion of the study: 1) model creation, 2) model validation, and 3) performance assessment. An initial cohort derived from the 1998–2009 NIS was used for developing the NIS-SSS and NIS-SOM models, termed the “model population” (n = 148,958 patients). For model validation, data from SAH patients treated at our institution (for whom HH grades and mRS scores were available) were used, composing the “validation population” (n = 716 patients). Lastly, unique patients from the 1998–2009 NIS, independent of those in the model population, were used for assessing the performance of the NIS-SSS (the “assessment population,” n = 147,395 patients).

The model and assessment population were derived from the 1998–2009 NIS databases. Patients were selected if their primary diagnosis was aneurysmal SAH (ICD-9-CM 430). Patients were excluded if they had diagnoses consistent with head trauma (ICD-9-CM 800.0–801.9, 803.0–804.9, 850.0–854.1, 873.0–873.9) or arteriovenous malformation and/or fistula (ICD-9-CM diagnosis 747.81; ICD-9-CM procedures 39.53, 92.30). Patients were also excluded if their length of stay was less than 1 day with an associated discharge to home. The final cohort was randomly divided into the model population (n = 148,958) and the assessment population (n = 147,395) using the RANUNI function provided by SAS version 9.3 (SAS Institute Inc.).

The validation population (n = 716) was derived from a database at the authors’ institution containing the billing data (ICD-9-CM diagnosis and procedure codes) for all hospitalizations from January 2002 through September 2011. Patients were selected based on the admitting diagnosis of aneurysmal SAH (ICD-9-CM 430). The charts of these patients were reviewed to verify that the reason for admission was a ruptured cerebral aneurysm. Those patients without an aneurysm or with other etiologies (for example, trauma, arteriovenous malformation, hemorrhagic stroke) were excluded. The final population was then cross-matched to their admission HH grade and hospital discharge mRS score, which were obtained from the prospectively collected database maintained as part of our institutional Stroke and Cerebrovascular Center.

Previous Methods of Case-Mix Adjustment

The 4 most standard methods for case-mix adjustment in administrative data are the Charlson Comorbidity Index (CCI).11 Agency for Healthcare Research and Quality (AHRQ) comorbidity measures,16 All Patient Refined Diagnosis Related Groups (APR-DRGs) severity and mortality indices (3M Health Information Systems),4 and All Payer Severity-adjusted Diagnosis Related Groups (APS-DRGs) mortality weight (HSS Inc.).3 The CCI is a summed score calculated from the presence of comorbid conditions and is intended to predict patient mortality. The AHRQ comorbidity measures assign variables for a number of predefined comorbidities (that is, hypertension, diabetes, renal disease, and so forth). The APR-DRGs and the APS-DRGs are modifications to the Medicare/Medicaid DRG prospective payment system. Both use similar information regarding patient comorbidities to calculate an index or weight to account for a patient’s severity of illness. The methodology used for their calculations have been described,7,4 but the software is proprietary. None
of these techniques uses neurological condition in their calculation.

Definition and Validation: NIS-SSS

The NIS-SSS was developed using both the HH and the World Federation of Neurosurgical Societies (WFNS) SAH grading scales as templates. With these SAH-specific measures as guidelines, the model population was interrogated for the ICD-9-CM diagnosis codes for coma (780.01, 780.03), stupor (780.02, 780.09), hydrocephalus (331.3, 331.4), paresis/plegia (438.2–438.53, 781.4), aphasia (438.1–438.89), and cranial nerve deficits (378.5–378.56, 379.4–379.43). Patients were also categorized based on ICD-9-CM procedure codes for the treatment of hydrocephalus (ventriculostomy 02.2 and CSF shunting 02.31–02.39) and mechanical ventilation (96.04, 96.7–96.72). We assumed that requiring mechanical ventilation and/or having hydrocephalus would serve as surrogates for decreased levels of consciousness.

The ability of each of the above categories to predict a poor outcome was then evaluated using chi-square analysis. Those diagnoses found to be significant univariate predictors were then entered into a multivariate logistic regression model. This generated coefficients (β) for significant predictors, which were used to obtain the NIS-SSS for each patient using the following equation:

\[
e_i = \exp\left(\sum_{i=1}^{n} \beta_i * x_i\right)
\]

where \(x_i = 1\) when the diagnosis is present and 0 if absent. This equation was derived empirically by comparing multiple formulations.

The concurrent validity of this NIS-SSS model was assessed within the validation population by analyzing how well it matched HH grade using 1-way ANOVA and ordinal logistic regression. The abilities of both the NIS-SSS and HH grading to predict mRS score at patient discharge were compared using logistic regression.

NIS-SSS Compared With Previous Measures

The NIS-SSS was calculated for each patient in the assessment population, and the abilities of the NIS-SSS, APR-DRG mortality index, APR-DRG severity index, APS-DRG mortality weight, and DRG to predict NIS-SOM were compared. The evaluation was accomplished by comparing the receiver operating characteristic (ROC) curve association statistics from a logistic regression model. The CCI and AHRQ comorbidity measures were purposely excluded from these comparisons; their calculations are clearly related to specific comorbid conditions and by their definition have no relation to neurological condition.

Definition and Validation: NIS-SOM

A dichotomous outcome variable, the NIS-SOM, was created. Good outcome was defined as discharge to home or a rehabilitation facility and/or hospital. Poor outcome was defined as in-hospital mortality; discharge to a nursing facility, extended care facility, or hospice; placement of a tracheostomy tube (ICD-9-CM procedures: 31.1, 31.2, 31.21, 31.29), and/or placement of a gastrostomy tube (ICD-9-CM procedures: 43.1, 43.11, 43.19, 44.32, 44.38, 44.39). This definition expands on previously used NIS outcome measures, which consider only discharge status, by including tracheostomy and gastrostomy tube placement as additional indications of disability. This definition of outcome was then applied to each patient in the validation population (for whom mRS score at discharge was available). Agreement between the NIS-SOM and mRS score was then assessed using the kappa statistic (with both mRS scores > 2 and mRS scores > 3 considered as poor outcomes). This analysis was also completed using the previously defined discharge-based outcome, allowing us to assess the performance of the new NIS-SOM.

Statistical Analysis

All statistical analyses were completed using SAS version 9.3 (SAS Institute Inc.). Statistical significance was defined as p < 0.01. For comparisons of interrater reliability using the kappa statistic, \(\kappa \geq 0.61\) was considered substantial and \(\kappa \geq 0.81\) was considered almost perfect.

Results

Development and Validation: NIS-SSS

Factors found to be significant predictors of NIS-SOM in the model population are shown in Table 1. These factors were entered into the multivariate logistic regression model and were all found to be significant predictors of outcome and formed the basis of the NIS-SSS.

Using the validation population, NIS-SSS strongly correlated with HH grade (Fig. 1). According to regression analysis, concordance was 67.5%, discordance was 17.5%, and the area under the curve (AUC) was 0.75. The difference in the mean NIS-SSS was statistically significant across all HH grades except between Grades I and II. There was no significant difference between NIS-SSS and HH grade in predicting poor outcome as defined by the mRS score at discharge (Fig. 2). The AUC for NIS-SSS was 0.81 (mRS score > 2) and 0.89 (mRS score > 3). The AUC for HH grade was 0.79 and 0.84 for mRS score > 2 and mRS score > 3, respectively (Table 2).

Comparing NIS-SSS With APR-DRG, APS-DRG, and DRG Systems

Results from the assessment population (AUC for each measure follows) comparing NIS-SSS (0.79) with APR-DRG mortality index (0.75), APR-DRG severity index (0.69), APS-DRG mortality weight (0.70), and DRG (0.71) demonstrated that NIS-SSS is significantly more accurate in predicting outcome when comparing AUC, rates of concordance, and rates of discordance (Fig. 3 and Table 3).

NIS-SOM Validation

In the validation population, the agreement between poor outcome as defined by an mRS score > 2 and NIS-SOM was 85.2% with a kappa statistic of 0.63 (substantial agreement; that is, \(\kappa \geq 0.61\)). The agreement between
Analysis of SAH in the NIS: NIS-SSS and NIS-SOM

NIS-SOM and poor outcome as defined by an mRS score > 3 was 94.8% with a kappa statistic of 0.84 (almost perfect agreement; that is, $\kappa \geq 0.81$). The distribution of each mRS category to “good” and “poor” NIS-SOM is shown in Table 4.

Agreement between previously used purely discharge-based outcome measures and poor outcome as defined by an mRS score > 2 was 80% with a kappa statistic of 0.47 (moderate agreement; that is, $\kappa \geq 0.41$). Agreement between discharge-based outcome and poor outcome as defined by an mRS score > 3 was 91% with a kappa statistic of 0.70 (substantial agreement, $\kappa \geq 0.61$).

Discussion

To meaningfully compare outcomes across large cohorts in a heterogeneous disease like SAH, it is imperative to have disease-specific severity measures to adjust for case mix; it is also critical to have outcome measures with validated clinical relevance to disability. The NIS-SSS and NIS-SOM provide new means of optimizing SAH research when utilizing data contained within the NIS, which otherwise lacks SAH-specific measures like HH grade and mRS score.

We derived and validated an SAH-specific severity score, the NIS-SSS, which can be calculated from information provided in administrative databases. Our results demonstrated a strong correlation between NIS-SSS and HH grade, one of the most commonly used measures of SAH severity. Moreover, there was no statistical difference between NIS-SSS and HH grade in predicting mRS-based outcome, confirming the NIS-SSS’s utility in clinical research using administrative databases. Furthermore, as compared with previous NIS measures of severity, which are based on patient comorbidities and not neurological condition, the NIS-SSS was shown to be a statistically superior predictor of post-SAH outcomes. From previous studies we know that initial presentation is one of the most significant predictors of outcome and a critical variable to adjust for in an analysis.47 Until now, research using the NIS to study SAH has suffered from an inability to control for severity. The NIS-SSS represents a significant improvement in accounting for factors related to SAH severity in database research.

Along with the NIS-SSS, we created an improved measure for assessing SAH outcomes in the NIS, that is, the NIS-SOM. The mRS is an established outcome measure in stroke research; outcome is usually dichotomized into “good” (mRS score ≤ 2) versus “poor” (mRS score ≥ 3), as was done in the International Subarachnoid An-

TABLE 1: Results from univariate and multivariate analyses of factors impacting SAH outcomes

<table>
<thead>
<tr>
<th>Factor</th>
<th>Univariate</th>
<th>Multivariate</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR 95% CI</td>
<td>OR 95% CI</td>
<td></td>
</tr>
<tr>
<td>mechanical ventilation</td>
<td>8.57 (8.31–8.34)</td>
<td>7.56 (7.37–7.53)</td>
<td><0.0001</td>
</tr>
<tr>
<td>hydrocephalus</td>
<td>1.46 (1.41–1.51)</td>
<td>0.93 (0.90–0.96)</td>
<td><0.0001</td>
</tr>
<tr>
<td>treatment of hydrocephalus</td>
<td>1.79 (1.74–1.84)</td>
<td>1.25 (1.21–1.29)</td>
<td><0.0001</td>
</tr>
<tr>
<td>coma</td>
<td>8.28 (7.77–8.82)</td>
<td>6.01 (5.65–6.41)</td>
<td><0.0001</td>
</tr>
<tr>
<td>stupor</td>
<td>0.89 (0.76–1.03)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>cranial nerve palsy</td>
<td>0.32 (0.28–0.36)</td>
<td>0.32 (0.29–0.36)</td>
<td><0.0001</td>
</tr>
<tr>
<td>paralysis/paraparesis</td>
<td>1.49 (1.34–1.66)</td>
<td>1.66 (1.46–1.88)</td>
<td><0.0001</td>
</tr>
<tr>
<td>aphasis</td>
<td>1.31 (1.17–1.48)</td>
<td>1.56 (1.36–1.79)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

* NA = not applicable.

![Fig. 1](image1.png)

Fig. 1. Bar graph demonstrates the mean NIS-SSS with 95% confidence interval error bars for each HH grade. The difference in mean NIS-SSS was statistically significant across HH Grade II to III, Grade III to IV, and Grade IV to V. There was no statistical difference between Grade I and II. Asterisks indicate statistically significant difference ($p < 0.005, 1$-way ANOVA).

![Fig. 2](image2.png)

Fig. 2. The mRS score was used to define “poor” outcome. In the first model, poor outcome was defined as mRS score > 2; in the second model, poor outcome was defined as mRS score ≥ 3. Curves represent the ROC curve profiles for NIS-SSS and HH grade to predict these outcomes.
Beyond clinical research, significant focus is being placed on measuring health care outcomes and quality. In 1983, the DRG prospective payment system (PPS) was implemented as the nationwide reimbursement system for Medicare and Medicaid.15,49 Soon after its introduction, the DRG’s use was expanded to measure health care outcomes.45 Numerous opponents argue that DRGs are inadequate in capturing a true case mix and that more accurate methods of assessing disease-specific factors must be developed.45 While others have shown that APR-DRG does accurately predict in-hospital mortality52 and outperforms the Medicare and Medicaid DRG system in predicting resource utilization,49 its direct correlation with HH grade has not been demonstrated. All of the aforementioned methodologies are based on patient-specific factors unrelated to neurological condition, such as patient age, comorbidities (hypertension, diabetes, coronary artery disease, and so forth), and procedures. It has been shown that these factors are important in determining patient outcomes; however, none account for the severity of SAH. The NIS-SSS resolves this issue by evaluating clinical factors more specific to patients with SAH.

The NIS database has been extensively studied in regard to SAH and aneurysm treatment.6,8,9,12–14,20,23–25,29–31,34,35,37,42–44,46,51 These studies have assessed the impact of hospital characteristics,23,25,51 patient comorbidities,20,24,35 and patient demographics.6,8,32,33,45 For example, a number of studies have found that hospital characteristics, such as treatment volume,15,34,43 academic status,3 and the ability to provide angioplasty,29 significantly affect outcomes. Others have shown that surgical clipping is associated with a higher use of hospital resources,23,51 the increased incidence of postprocedure epilepsy,25 and increased mortality.51 An important factor potentially confounding these results is that, thus far, case-mix adjustment has involved the use of the CCI 8,9,13,35,42,44 AHRQ comorbidity measures,6,12,14,20,23–25,31,46,53 APR-DRGs,29,43,51 or nothing at all.3,30,34,37 The CCI and AHRQ comorbidity measures were developed to control for the impact of patient comorbidities on outcomes. After using the APR-DRG index, some authors stated that direct comparisons between the APR-DRG and HH grade can be made.43 While others have shown that APR-DRG does accurately predict in-hospital mortality52 and outperforms the Medicare and Medicaid DRG system in predicting resource utilization,49 its direct correlation with HH grade has not been demonstrated. All of the aforementioned methodologies are based on patient-specific factors unrelated to neurological condition, such as patient age, comorbidities (hypertension, diabetes, coronary artery disease, and so forth), and procedures. It has been shown that these factors are important in determining patient outcomes; however, none account for the severity of SAH. The NIS-SSS resolves this issue by evaluating clinical factors more specific to patients with SAH.

C. W. Washington et al.

Table 2: Comparison of NIS-SSS and HH grade in predicting outcomes

<table>
<thead>
<tr>
<th>Measure</th>
<th>ROC AUC</th>
<th>Concordance</th>
<th>Discordance</th>
<th>ROC Difference*</th>
<th>p Value for ROC Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>poor outcome, mRS score ≥2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIS-SSS</td>
<td>0.806</td>
<td>75.6</td>
<td>14.5</td>
<td>−0.0135</td>
<td>0.7623</td>
</tr>
<tr>
<td>HH</td>
<td>0.792</td>
<td>68.8</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>poor outcome, mRS score >3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIS-SSS</td>
<td>0.885</td>
<td>85.3</td>
<td>8.3</td>
<td>−0.0434</td>
<td>0.3858</td>
</tr>
<tr>
<td>HH</td>
<td>0.841</td>
<td>75.4</td>
<td>7.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ROC difference = HH − NIS-SSS.
cy to develop clinical guidelines and quality tools and as a basis for reimbursement.30 Considering the serious implications, we must ensure that these measures accurately represent important clinical factors established through years of research and observation. To this point, as the use of administrative data in health care research continues to expand,18,32,46 validated methods to control for presenting neurological conditions in other cerebrovascular diseases, such as ischemic stroke and intracerebral hemorrhage, should be developed.

The NIS-SSS is unique in that it considers features more specific to SAH and neurological outcomes. However, there are significant limitations to this method, which are inherent to the data used to develop it. First, our study was retrospective and used a very heterogeneous population of patients. Therefore, we made every attempt to account for these facts by comparing our measures, both the NIS-SSS and NIS-SOM, with known standards, HH grade and mRS score, in a population with prospectively collected data. Moreover, creating the model in one patient population and then validating it in two separate cohorts helped to ensure that we did not over-fit our model. Second, diagnoses and outcomes were calculated based on ICD-9-CM codes acquired from billing data. Billing data are generated following patient discharge. We realize that it is possible that some of the diagnoses and procedures occurred after presentation; for example, it is possible that a patient was admitted in good neurological condition but that their poor outcome was related to an iatrogenic complication. Similarly, a patient presenting in a poor neurological condition may have ultimately had a good outcome after successful treatment. Unfortunately, this cannot be controlled for within the NIS, where the temporal component of data is unknown. The validation population, with its prospectively collected HH grades and mRS outcome scores, was used to account for the unknown temporal component. The significant, although not perfect, correlation between HH grade and NIS-SSS and between mRS score and NIS-SOM provides evidence that this limitation does not negate the utility of these new measures. Nonetheless, the lack of full temporal knowledge may continue to limit the complete application of administrative data research.

Further limitations include the inherent errors that exist within administrative data; for instance, it is very likely that not all patients from the NIS were truly admitted for aneurysmal SAH. Fortunately, research using administrative data has shown that the inaccuracy related to ICD-9-CM coding can be significantly improved through the use of multiple related codes,21,57 which was our methodology. Lastly, outcomes were based on factors at the time of patient discharge rather than a more expanded follow-up period. While this strategy is imperfect, previous administrative studies have provided justification by demonstrating that a facility’s in-hospital mortality calculated from administrative data are an accurate surrogate for 30-day mortality.7,48

It is important for the reader to appreciate the context in which the NIS-SSS and NIS-SOM were created. They were not developed to replace HH grade, WFNS grade, or mRS score, which are important and validated clinical tools. Further, many additional factors unknown in administrative data—that is, imaging findings, treatment complications, development of cerebral vasospasm—ultimately contribute to outcome following SAH. The goal of this study was to develop a methodology through which research in SAH using administrative data could be made more accurate and clinically applicable than the methods used currently.

TABLE 4: Breakdown of validation population according to outcome classifications per the NIS-SOM for each mRS category

<table>
<thead>
<tr>
<th>mRS Score</th>
<th>NIS-SOM</th>
<th>Good Outcome (%)</th>
<th>Poor Outcome (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>96</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>93</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>44</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>

Conclusions

We developed and validated the NIS-SSS and NIS-SOM, two original measures that allow controlling for the severity of SAH and accurately determining outcome when utilizing the NIS in clinical research. The NIS-SSS outperformed previously established measures of disease severity in predicting outcome. The NIS-SSS holds promise as a superior means of adjusting for case mix when comparing surgical versus endovascular treatments as well as outcomes related to hospital characteristics. Future stud-
ies analyzing the NIS-SSS’s ability to predict costs and resource utilization will be initiated, as this score may have a significant impact on measurements of quality and potential reimbursement. We believe that the NIS-SSS and NIS-SOM should be included in all future NIS analyses.

Disclosure

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. Dr. Derdyn is a consultant for W.L. Gore & Associates, holds stock in Pulse Therapeutics, and has received non-study-related support from MicroVention Inc and Penumbra Inc. Research reported in this publication was supported by the Washington University Institute of Clinical and Translational Sciences Grant No. UL1 TR000448 from the National Center for Advancing Translational Sciences (NCATS), National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official view of the NIH.

Author contributions to the study and manuscript preparation include the following. Conception and design: Washington, Derdyn. Acquisition of data: Washington. Analysis and interpretation of data: Washington, Dhar, Zipfel. Drafting the article: Washington. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Washington. Statistical analysis: Washington. Study supervision: Zipfel.

References

25. Hoh BL, Nathoo S, Chi YY, Mocco J, Barker FG II: Incidence