Sarcopenia is the muscle atrophy associated with aging and disease progression. This condition is highly prevalent in the elderly population, with older adults losing up to 15% of their total muscle mass during their 7th decade of life. In addition to being an independent predictor of fall risk, hospital-acquired infection, and all-cause mortality, sarcopenia has been shown to significantly increase inpatient costs following elective general surgery.

Over the last 2 decades, Medicare spending on lumbar spine surgery has risen nearly 500%, reaching a cost of $482 million annually. As these costs have continued to grow, so too has the need for cost-effective surgical practices and appropriate patient selection. The assessment of sarcopenia prior to surgery may represent one such risk stratification tool. To put the impact of sarcopenia in perspective, it has been estimated that a 10% decrease in the prevalence of sarcopenia nationally could amount to health care cost savings of $1.1 billion annually in the US.

While sarcopenia has been identified as an independent predictor of higher postoperative costs and poorer outcomes following general surgery, few studies have
measured the impact of sarcopenia on inpatient surgical costs following orthopedic surgery, despite the fact that as many as 44% of orthopedic patients may meet the criteria for sarcopenia.13

In this investigation, we examined the effect of sarcopenia on inpatient surgical costs following thoracolumbar spine surgery. In addition to the total inpatient cost, a subanalysis was performed to examine which aspects of the hospitalization were costlier for sarcopenic patients. We hypothesized that sarcopenia would be associated with a greater overall cost of hospitalization following thoracolumbar spine surgery.

Methods

Study Design

Institutional review board approval from Rhode Island Hospital was obtained prior to initiating this investigation. All patients undergoing thoracolumbar decompression or decompression with fusion at a single institution from 2003 to 2015 were analyzed. All surgical indications were considered for inclusion. Patients were included if they were older than 55 years, if there was a perioperative CT scan available for measuring psoas muscle cross-sectional area (performed an average of 4.3 months prior to date of surgery; range 0–21.4 months), and if inpatient cost data were available from the hospital’s billing department. Patients were excluded if a CT scan had been performed more than 2 years prior to a patient’s surgery date, or if the patient’s inpatient cost data were unavailable.

Measurement of Sarcopenia

All sarcopenia measurements were performed using axial views of the psoas muscle at the L-4 vertebra on CT. The cross-sectional areas of the left and right psoas muscles at the level of the transverse process of L-4 were measured manually using Osirix imaging software (Pixmeo), with fat stranding observed on CT used to exclude fat tissue from psoas muscle measurement. Measurements were made using the axial image in which both transverse processes were fully visualized to improve objectivity and reproducibility of the measurement, as previously described.21 The cross-sectional areas were then added to calculate the L-4 total psoas area (TPA). A single investigator blinded to patient diagnosis and outcomes calculated the TPA two separate times for each patient, in a random order on two different occasions, with the two values subsequently averaged. Patients were diagnosed with sarcopenia if they fell into the lowest tertile for their sex-specific TPA.

Outcome Variables

The primary outcome variable was the total inpatient hospitalization cost, which included the cost of the surgical procedure and all costs incurred during the inpatient postoperative period. Secondary outcomes measures included the following individual costs: surgical cost (cost of operating room time, instrumentation, and perioperative nursing care), cost of occupying a hospital bed (nursing care for a routine bed, step-down bed, or intensive care unit [ICU] bed), blood bank, laboratory studies, diagnositic imaging, pharmacy costs, respiratory care, endoscopy, emergency department cost, rehabilitation services (both physical and occupational therapists), intravenous therapy (cost of fluid resuscitation, venous access), and central supply (cost of all medical-grade equipment not routinely available on the hospital floor). Costs were obtained from the hospital charge center prior to being negotiated by insurance, with cost data adjusted for year-to-year inflation by the cost center. All costs were based on a standardized hospital registrar, completely independent of insurance type or reimbursement rates. Additional secondary outcomes included requirements for blood transfusions and advanced imaging (defined as CT, MRI, or ultrasonography).

Preoperative health and comorbidity burden was measured using the Charlson Comorbidity Index (CCI), a well-validated index used to account for complex medical comorbidities such as end-organ disease (e.g., end-stage renal disease) and presence of malignancy (localized and metastatic).25 Patient charts were reviewed in detail to identify medical comorbidities based on ICD-10 codes, which were subsequently used for calculation of the CCI as previously described.3,22

Statistical Analysis

A Student t-test was used to compare mean differences in total hospital costs and for each individual department cost between sarcopenic and nonsarcopenic patients. A z-score was used to assess for differences in the proportion of patients receiving blood transfusion or advanced imaging for sarcopenic versus nonsarcopenic patients. A cutoff of p = 0.05 was used to determine significance for all tests (SPSS version 21, IBM Corp.).

Results

Fifty patients met inclusion criteria for the study, with 16 (8 men and 8 women) falling into the lowest tertile for sex-specific L-4 TPA and thus diagnosed with sarcopenia. Follow-up duration ranged from 6 days (died in hospital) to 12.7 years, with an average of 4.6 years. Indications for surgery were spinal stenosis in 35 patients (4 secondary to metastasis), degenerative scoliosis in 4 patients, epidural abscess or discitis in 5, acute fracture requiring operative fixation in 4 (1 secondary to metastasis), and radiculopathy in 2 (Table 1). All 5 patients requiring an operation for spinal metastasis were sarcopenic. However, there was no significant difference between the proportion of sarcopenic and nonsarcopenic patients with any diagnosed malignancy (8 vs 9 patients, respectively; p = 0.1). Sarco-penic patients were significantly older than nonsarcopenic patients with a mean age of 76.6 years compared with 70.8 years, respectively (p = 0.027). There was no statistically significant difference in mean CCI (3.6 vs 3.2, p = 0.59) for sarcopenic patients compared with nonsarcopenic patients.

The average total hospital cost was 1.75-fold greater for sarcopenic versus nonsarcopenic patients ($53,128 vs $30,292, p = 0.04; Table 2). There was no significant difference in total surgical costs (inclusive of operating room time, instrumentation cost, and cost of perioperative care) for sarcopenic versus nonsarcopenic patients ($23,515 vs
Sarcopenia is a common condition in older age and may account for an additional $18.5 billion in health care expenditures annually. Our previous study of sarcopenia in patients who underwent thoracolumbar spine surgery demonstrated that sarcopenic patients had a significantly increased risk of death, in-hospital complications, and discharge to rehabilitation facilities, as well as longer length of hospital stay. While previous studies have shown that sarcopenia increases the cost of elective general surgery by nearly $10,000 per cm² of psoas area, this study is the first to demonstrate that sarcopenia is associated with significantly higher costs following thoracolumbar spine surgery. Specifically, the total hospitalization cost for sarcopenic patients was nearly $23,000 greater per patient. This finding is particularly salient given that sarcopenia rates are as high as 44.1% in certain orthopedic populations.

Interestingly, there was no significant difference in the total operative cost; the biggest differences in costs were in occupying a routine hospital bed, receiving blood, laboratory testing, advanced diagnostic imaging, and respiratory care. Therefore, it appears that the largest cost drivers during hospitalization are the need for closer monitoring and the interventions for blood loss and other surgical complications. These nonsurgical costs accounted for more than 50% of the total cost in sarcopenic patients but less than 35% in nonsarcopenic patients (Fig. 1). These findings are consistent with numerous previous investigations demonstrating that sarcopenia is an independent predictor of postoperative complications following abdominal and emergency surgery. Likewise, sarcopenia has also been associated with reduced left ventricular ejection fractions and respiratory failure.

It is especially important that sarcopenic patients were 2.1 times more likely to receive a blood transfusion compared with nonsarcopenic patients. Not only has blood transfusion been shown to increase the potential for postoperative infection and the average length of ICU stay following spine surgery, but it also exposes patients to transfusion-related acute lung injury and transfusion-associated circulatory overload, both of which may be fatal to the sarcopenic patient. This study had several potential limitations. One limitation is that only the L-4 TPA was used to define sarcopenia. Other investigations have used Hounsfield units on CT scan, quadriceps area, dual energy x-ray absorptiometry, or bioelectrical impedance analysis in combination with measures of muscle strength (handgrip) and physical performance (gait speed). L-4 TPA was used in this study.
Impact of sarcopenia on inpatient costs following spine surgery

J Neurosurg Spine Volume 27 • December 2017

FIG. 1. Percentage of total cost for the 7 largest cost drivers during hospitalization for thoracolumbar spine surgery. A star denotes statistically significant differences. Figure is available in color online only.

...study given the wide availability of CT scans in spine surgery patients, as well as the strong objectivity and reproducibility of this measure. In addition, because CT scans were obtained perioperatively, we could not exclude the possibility that patients may have developed sarcopenia due to the operation itself. Furthermore, due to a lack of data regarding patient body mass index, we were not able to identify patients with sarcopenic obesity, which has been associated with worse outcomes. Another potential limitation is that sarcopenic patients in our study were significantly older than nonsarcopenic patients, and that all 5 patients with spinal metastasis were sarcopenic. This may have contributed to the higher cost of care associated with sarcopenia, although it should be noted that sarcopenic and nonsarcopenic patients in our study did not significantly differ in mean CCI score, which adjusts for age and accounts for comorbidities including metastasis. Finally, our study retrospectively analyzed a patient cohort from a single institution, and accounted for only direct patient costs. Future studies would be strengthened by analyzing indirect costs in addition to prospectively studying a larger sample size derived from multiple centers.

Conclusions

This study demonstrates that sarcopenia is associated with higher total postoperative costs following thoracolumbar surgery, in addition to higher costs for both routine laboratory tests and advanced diagnostic imaging. Given the growing importance of cost containment and an increasingly outcomes-based surgical climate, measuring sarcopenia represents one potential strategy for screening spine surgery patients and predicting surgical cost, especially considering the widespread use of lumbar CT scans in this setting.

References

18. Mei KL., Batsis JA, Mills JB, Holubar SD: Sarcopenia and sarcopenic obesity: do they predict inferior oncologic out-

Disclosures
Dr. Daniels reports being a paid consultant for DePuy, Globus Medical, Orthofix, SpineArt, and Stryker, and an unpaid consultant for Osseus; receiving research support for the study from Orthofix; and receiving financial or material support from DePuy, Medtronic Sofamor Danek, and Stryker.

Author Contributions
Conception and design: all authors. Acquisition of data: all authors. Analysis and interpretation of data: all authors. Drafting the article: all authors. Critically revising the article: all authors. Reviewed submitted version of manuscript: Daniels, Bokshan, DePasse, Eltorai. Statistical analysis: Bokshan.

Correspondence
Alan H. Daniels, Department of Orthopaedic Surgery, Brown University, Warren Alpert Medical School, 100 Butler Dr., Providence, RI 02906. email: alandanielsmd@gmail.com.