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The surgical management of adult spinal deformity 
(ASD) can provide significant improvements in 
pain, disability, and health-related quality of life 

(HRQOL).6,7,​28,34,36–38,40–45 However, these procedures are 
technically demanding and are associated with a high 
complication rate. The patient population suitable for these 
complicated surgeries continues to increase, including pa-
tients of advanced age.2,16,​17,27 The reported complication 
rates in the literature are varied and range from 14% to 
71%.11,13,​39,​47,48 It has been demonstrated that complica-
tion rates increase for patients undergoing revision sur-
gery,13 3-column osteotomies,8,23,30,49,50 and those of older 
age.2,16,20,39 Despite the abundant literature characterizing 
complication rates and the types of complications in ASD 
surgery,47,48 there is currently no model to predict which 
patients may develop complications following the surgical 
correction of ASD.

The ability to accurately identify these patients preop-
eratively constitutes a significant challenge, yet an accu-
rate predictive model could be beneficial for both the pa-
tient and surgeon. The results of such a model could aid in 
the discussion between the patient and surgeon of whether 
to pursue a surgical intervention and, for those who opt 
for surgery, in adjusting the goals of surgery within the 
context of potential complication development. Addition-
ally, the surgeon can plan accordingly for the operation 
and may employ additional techniques and/or preventa-
tive measures to potentially reduce the risk of the patient 
developing these complications. This patient-specific ap-
proach at complication avoidance could reduce the over-
all complication rate and thus potentially decrease patient 
morbidity.

With the advent of modern advanced predictive ana-
lytics techniques, one can now create accurate, patient-
specific, predictive models with high accuracy, which can 
provide very useful information to aid in clinical decision 
making.15 Although traditional statistical methods can 
also be very clinically useful, these methods tend to be 
limited for use in developing patient-specific predictive 
models.1 Furthermore, they are generally designed to test 
specific hypotheses, have many assumptions that need to 
be satisfied before use, and use patient group means, not 
accounting for individual changes.1,32 Modern predictive 
modeling algorithms are very different because they can 
identify patterns in the data, allowing for accurate pre-
dictions without the need for a hypothesis. Thus, patient-
specific models can be developed to provide valuable, 
detailed information, which can then be applied when 
discussing the risks of surgery with a patient. The goal 
of this study was to develop a model based on baseline 
demographic, radiographic, and surgical factors that could 
predict the patients likely to sustain a major intraoperative 
or perioperative complication.

Methods
Patient Population

This study is a retrospective review of a prospective 
multicenter ASD database, which is composed of patients 
from 11 sites across the US. All patients were enrolled in 
an IRB-approved protocol by each site. Inclusion criteria 
for the databases were age ≥ 18 years and the presence of 
spinal deformity, as defined by any coronal Cobb angle ≥ 
20°, sagittal vertical axis (SVA) ≥ 5 cm, pelvic tilt (PT) ≥ 
25°, or thoracic kyphosis (TK) ≥ 60°. Exclusion criteria 
included spinal deformity of a neuromuscular etiology and 
presence of active infection or malignancy.

Data Collection, Radiographic Assessment, and HRQOL
The demographic and clinical data collected included 

patient age, sex, body mass index (BMI), number of co-
morbidities, Charlson Comorbidity Index (CCI),10 pre-
operative anemia, history of depression, osteoporosis, 
American Society of Anesthesiologists (ASA) physical 
status classification, as well as all intraoperative and peri-
operative complications. Surgical data collected included 
primary versus revision surgery, single versus staged pro-
cedures, posterior fusion rod diameter and material, the 
uppermost instrumented vertebra, the lowermost instru-
mented vertebra, use of direct spinal decompression, num-
ber of decompression levels, number of Smith-Petersen 
osteotomies, presence of a 3-column osteotomy (pedicle 
subtraction osteotomy or vertebral column resection), 
number of interbody fusions, use of an iliac graft, use of 
recombinant human bone morphogenetic protein (BMP), 
and number of posterior vertebral levels fused. The surgi-
cal variables were included under the assumption that the 
same factors could be derived from a preoperative surgi-
cal plan and that their inclusion would yield a more com-
plete preoperative predictive model.

Full-length (36-inch cassette) posteroanterior and lat-
eral spine radiographs at baseline and 6 weeks follow-up 
were analyzed using validated software9,33 (SpineView, 
ENSAM, Laboratory of Biomechanics). Only baseline 
radiographic measures were included in the model and 
the 6-week radiographs were used for complication de-
termination. All radiographic measures were performed 
at a central location based on standard techniques31 and 
included: maximum coronal Cobb angles of thoracic and 
lumbar curves (grouped by < 30°, 30°–60°, and > 60°); 
coronal C-7 plumb line; TK (T4–12; Cobb angle between 
superior endplate of T-4 and inferior endplate of T-12); 
lumbar lordosis (Cobb angle between superior endplate 
of L-1 and superior endplate of S-1); SVA (offset of C-7 
plumb line relative to S-1); PT; the mismatch between 
pelvic incidence and lumbar lordosis (PI-LL); and the T-1 
pelvic angle (T1PA; the angle between the line from the 
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femoral head axis to the centroid of T-1 and the line from 
the femoral head axis to the middle of the S-1 endplate). 
Based on the above radiographic parameters, patients 
were additionally stratified by the SRS-Schwab ASD clas-
sification.35

Standardized HRQOL measures were recorded at base-
line and included the Oswestry Disability Index (ODI), 
SF-36, and Scoliosis Research Society-22r questionnaire 
(SRS-22r). Two standard summary scores were calculated 
based on the SF-36, the Physical Component Summary 
(PCS) and the Mental Component Summary (MCS). The 
SRS-22r provides a total score and multiple subdomains, 
including activity, pain, appearance, mental, and satisfac-
tion. A numeric rating scale (NRS) score ranging from 0 
(no pain) to 10 (most unbearable pain) was collected for 
back and leg pain separately.

Patients were grouped as either having at least 1 ma-
jor intraoperative or perioperative complication (COMP 
group) or not (NOCOMP group). Perioperative complica-
tions were defined as those occurring within 6 weeks of 
surgery. Major and minor complications were classified 
according to the study of Glassman et al.18 All of the pa-
tients included had a minimum of 6 weeks of follow-up 
to capture any perioperative complications. The compli-
cation categories included cardiopulmonary, electrolyte, 
gastrointestinal, implant, infection, musculoskeletal, neu-
rological, operative, radiographic, renal, vascular, wound, 
and other.

Statistical Analysis and Predictive Model Construction
Continuous variables were described with means and 

standard deviations. Baseline variables were compared 
between the groups. Normality of data was determined us-
ing the Shapiro-Wilk test. Comparison of baseline means 
between the groups included the Student t-test or Wilcox-
on rank-sum tests where appropriate. Frequency analyses 
for categorical variables were conducted via Pearson’s c2 
analysis. All statistical analyses were conducted using 
commercially available software (SPSS version 22, IBM 
Inc.) and the level of significance was set at p < 0.05 for 
all tests.

For the predictive model, missing values within the 
database were imputed using standard techniques such 
as mean and median imputation.1 Once a complete data 
set was constructed, an ensemble of decision trees was 
constructed with a binary target variable that included 
patients who sustained at least 1 major intraoperative or 
perioperative complication, as defined above (code = 1), 
or not having any major intraoperative or perioperative 
complications (code = 0). The decision-tree algorithm was 
C5.0 and 5 different bootstrapped models were built.1 In-
ternal validation was accomplished via a 70/30 data split 
for training and testing the model, respectively.1 Final 
overall predictions from the models were combined and 
chosen by voting with random selection for tied votes. 
Overall accuracy and the area under the receiver operat-
ing characteristic (AUROC) curve were calculated as well 
as predictor importance as determined by the model. The 
model was built using commercially available software 
(SPSS Modeler version 16, IBM Inc.).

Results
Patient Population

A total of 557 operative patients were available and in-
cluded in the study. Of those, 409 did not sustain a major 
complication (NOCOMP group, 73.4%), and 148 had at 
least 1 intraoperative or perioperative major complication 
(COMP group, 26.6%). From the total, 390 patients (70%) 
were used for model training and 167 (30%) for testing the 
model. The percentage split was determined randomly but 
was within the acceptable splitting percentage options for 
predictive modeling.1 There were 439 women (78.8%) and 
118 men (21.2%) and the mean age was 57.5 ± 15.3 years 
with a mean BMI of 27.6 ± 8.6 kg/m2 (Table 1). The COMP 
group was significantly older, had a greater mean BMI, 
higher mean CCI, higher mean ASA score, and a higher 
proportion of patients with osteoporosis (p < 0.05 for all, 
Table 1). The COMP group had a significantly higher pro-
portion of patients with baseline SRS-Schwab coronal 
curve type of L (47.6% vs 30.8%, p < 0.05, Table 1).

Surgical Data
The COMP group had a larger proportion of patients 

who underwent a revision (41.9%) versus primary surgery 
(31.5%; p = 0.023) and who had a direct decompression 
(25.7% vs 20.3%, p = 0.0034; Table 2). In addition, the 
COMP group had a significantly higher proportion of 
patients who underwent an interbody fusion, iliac crest 
graft, and BMP use (p < 0.05 for all, Table 2). The mean 
number of posterior levels fused was statistically similar 
between groups (p > 0.05, Table 2). Both groups also had 

TABLE 1. Demographic data of all the patients as well as each 
group

Variable  All Patients COMP NOCOMP p Value

No. of patients 557 148 409
Mean age ± SD (yrs) 57.5 ± 15.3 61.5 ± 12.3 56 ± 16.1 0.0004
Females/males 439/118 119/29 320/89 0.5806
Mean BMI ± SD 27.6 ± 8.6 28.6 ± 6 27.3 ± 9.3 0.0013
Mean CCI ± SD 1.5 ± 1.7 1.9 ± 1.7 1.4 ± 1.6 0.0009
Mean ASA score 

± SD
2.3 ± 0.7 2.4 ± 0.6 2.3 ± 0.7 0.0061

Preop anemia (%) 52 (9.3) 12 (8.1) 40 (9.8) 0.5491
Osteoporosis (%) 70 (12.6) 28 (18.9) 42 (10.3) 0.0065
Depression (%) 131 (23.5) 35 (23.6) 96 (23.5) 0.9653
SRS-Schwab coro-

nal curve type (%)
0.0047

    N 33.6 30.3 34.8
    T 5.9 4.8 6.3
    L 35.3 47.6 30.8
    D 25.1 17.2 28.0

SRS-Schwab coronal curve types: N = patients with no coronal curve > 30° 
(i.e., no major coronal deformity); T = patients with a thoracic major curve > 
30° (apical level of T-9 or higher); L = patients with a lumbar or thoracolumbar 
major curve > 30° (apical level of T-10 or lower); and D = patients with a double 
major curve, with each curve > 30°.
Boldface type indicates statistically significant differences between the COMP 
and NOCOMP groups.
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statistically similar proportions of patients with different 
rod diameters and materials (p > 0.05 for both, Table 2). 
The proportion of patients who suffered major complica-
tions and specific complication subtypes are presented in 
Table 3.

Radiographic Data
Baseline radiographic parameters of the COMP and 

NOCOMP groups are shown in Table 4. The COMP 
group had significantly greater mean baseline SVA (77.7 
mm vs 61.2 mm, p = 0.015) and T1PA (25.0° vs 21.4°, p = 
0.014) than the NOCOMP group (p < 0.05 for both). Both 
groups had similar baseline mean PT, PI-LL, TK, C-7 cor-
onal plumb line, and proportion of patients in each of the 
maximum coronal Cobb angle groups (p > 0.05 for all).

HRQOL Data
The COMP group had significantly worse baseline 

mean scores for ODI, PCS, SRS activity, SRS pain, SRS 
total, and leg pain NRS (p < 0.05 for all, Table 5). All other 
HRQOL variables were statistically similar between the 
groups (p > 0.05 for all).

Model Results
The overall model accuracy was 87.6% correct with 

an AUROC of 0.89 indicating a very good model fit. In 
total, 20 variables were determined to be the top predic-

tors (importance ≥ 0.90 out of 0–1 as determined by the 
model) and included (in decreasing importance): age, leg 
pain NRS, ODI, number of levels decompressed, num-
ber of levels with an interbody fusion, PCS, SRS-Schwab 
coronal curve type, CCI, SRS activity, T1PA, ASA grade, 
presence of osteoporosis, PT, SVA, primary version revi-

TABLE 2. Surgical data of all the patients as well as each group

Surgical Data
All Patients 

(%)
COMP  

(%)
NOCOMP 

(%)
p  

Value

No. of patients 557 148 409  
Primary/revision 366/191 86/62 280/129 0.0230
Mean no. of posterior 

levels fused ± SD
11.2 ± 4.2 11.6 ± 3.8 11 ± 4.4 0.5383

Decompression 343 (61.6) 106 (71.6) 237 (57.9) 0.0034
3-column osteotomy 121 (21.7) 38 (25.7) 83 (20.3) 0.1736
Smith-Petersen 

osteotomy
291 (52.2) 81 (54.7) 210 (51.3) 0.4799

Interbody fusion 332 (59.6) 105 (70.9) 227 (55.5) 0.0010
Iliac crest graft 163 (29.3) 53 (35.8) 110 (26.9) 0.0411
BMP use 356 (63.9) 105 (70.9) 251 (61.4) 0.0376
Posterior rod diam-

eter in mm
0.626

    4.5 2 (0.4) 0 (0) 2 (0.5)
    5.5 360 (64.6) 91 (61.5) 269 (65.8)
    6.0 66 (11.8) 19 (12.8) 47 (11.5)
    6.35 129 (23.1) 38 (25.7) 91 (22.2)
Posterior rod material 0.7519
  Cobalt chromium 340 (61.0) 92 (62.2) 248 (60.6)
  Stainless steel 115 (20.6) 27 (18.2) 88 (21.5)
  Titanium 101 (18.1) 29 (19.6) 72 (17.6)
  Other 1 (0.2) 0 (0) 1 (0.2)

Boldface type indicates statistically significant differences between the COMP 
and NOCOMP groups.

TABLE 3. Distribution of complication number and types for the 
COMP group

Variable Value (%)

Total no. of patients 148
No. of major complications
  1 117 (79.1)
  2 18 (12.2)
  3 7 (4.7)
  4 3 (2)
  5 or more 3 (2)
Complication type
  Cardiopulmonary 34 (23)
  Electrolyte 0 (0)
  Gastrointestinal 1 (0.7)
  Implant 10 (6.8)
  Infection 23 (15.5)
  Musculoskeletal 0 (0)
  Neurological 34 (23)
  Operative 57 (38.5)
  Other 1 (0.7)
  Radiographic 11 (7.4)
  Renal 4 (2.7)
  Vascular 0 (0)
  Wound 7 (4.7)

TABLE 4. Preoperative radiographic data parameters included in 
the model for all patients and the COMP and NOCOMP groups

Preop Radiographic 
Parameter 

All  
Patients COMP NOCOMP

p 
Value

Mean PT ± SD (°) 23.3 ± 10.7 25.1 ± 10.4 22.7 ± 10.7 0.086
Mean PI-LL ± SD (°) 15.7 ± 21 18.5 ± 20.9 14.6 ± 21 0.0523
Mean TK ± SD (°) 35.2 ± 19.1 36.7 ± 19.1 34.7 ± 19.1 0.3538
Mean SVA ± SD 

(mm)
65.6 ± 74.2 77.7 ± 73.6 61.2 ± 74 0.0148

Mean T1PA ± SD (°) 22.3 ± 13.2 25 ± 13.3 21.4 ± 13.1 0.0138
Mean C-7 coronal 

plumb line ± SD 
(mm)

35 ± 33.1 38 ± 36.5 33.9 ± 31.8 0.2349

Max coronal Cobb 
angle groups (%)

0.1158

    <30° 211 (37.9) 51 (34.5) 160 (39.1)
    30°–60° 247 (44.3) 76 (51.4) 171 (41.8)
    >60° 99 (17.8) 21 (14.2) 78 (19.1)

Boldface type indicates statistically significant differences between the COMP 
and NOCOMP groups. 
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sion surgery, SRS pain, SRS total, use of BMP, use of iliac 
crest graft, and PI-LL (Table 6).

Discussion
In this investigation, a large cohort of patients with 

ASD who underwent surgical correction was used to con-
struct an accurate, internally validated, patient-specific, 
preoperative predictive model for developing a major in-
tra- or perioperative complication. The model is designed 
for preoperative use and thus the surgical variables were 
added retrospectively with the assumption that these could 
have been part of a preoperative surgical plan. This model 
sets the framework to create a website or ideally a mobile 
(i.e., tablet) application for calculating the risk of develop-
ing short-term major complications in real time as a point-
of-care device. In this context, when formulating the sur-
gical plan, and in discussion with the patient, alterations 
could be made to optimize the risk-benefit equation. For 
example, a particular maneuver that may be appropriate 
in one patient with an otherwise low risk profile may, in 
a different patient with a high predicted baseline risk, be 
judged to be too dangerous. Quantifying surgical risk in 
a given patient represents a significant challenge given the 
multitude of factors that interact in a complex manner to 
contribute to the overall risk. The model presented herein 
could be readily applied to this task and yield objective 
and accurate information to aid surgeons and inform pa-
tients.

It is important to understand the rationale behind the 
predictive modeling technique used in the present study. 
Decision trees were chosen based on many desirable prop-
erties for the given binary outcome of having a complica-
tion or not that included: 1) ability to handle hundreds of 
variables, both categorical and continuous; 2) feasibility 
with missing data; and 3) ease of construction.1 The com-
bination of 5 decision-tree models is termed an “ensemble” 
in which the final predictions are based on all 5 models. 
This allows for increased accuracy at the cost of decrease 

in interpretability (transparency).1 The exact rules govern-
ing how the predictions are made are unavailable because 
the computer calculates all of the predictions, in contrast to 
logistic regression, in which one obtains odds/hazard ratios 
to apply. Internal validation of the model was accomplished 
by splitting the data in a 70/30 ratio for training and testing, 
respectively, to increase the generalizability of the model. 
Both data sets were randomly chosen with the training set 
used for model construction and the testing data set used 
to determine the accuracy (and AUROC) as those patients 
were not involved in the model building. And the final 
modeling principle involved bootstrapping the data sets (as 
well as each of the 5 decision trees), which results in no 
model receiving the same set of patient data. This greatly 
increases the generalizability of the final model.

It is important to note that the predictive modeling 
techniques used in the present study, as well as in general, 
are a distinct form of analysis compared with traditional 
regression in several ways.1 It involves complex algorithms 
that identify patterns in large data sets, which then allow 
for prediction of a given outcome of interest. There was no 
hypothesis, no control being compared, and the model re-
lied entirely on the available data.1 Conversely, traditional 
statistics are mathematical analyses used to test a hypoth-
esis about a relationship between independent and depen-
dent variables, and thus appropriate controls are neces-
sary. Furthermore, the appropriate statistical test must be 

TABLE 5. HRQOL measures for all patients and the COMP and 
NOCOMP groups

Preop HRQOL All Patients* COMP* NOCOMP* p Value

ODI 44.5 ± 18.6 49 ± 17.8 42.9 ± 18.6 0.0007
PCS 31.4 ± 9.4 29.3 ± 8.5 32.1 ± 9.7 0.0021
MCS 45.2 ± 13.2 44.7 ± 12.6 45.4 ± 13.4 0.3787
SRS
  Activity 2.9 ± 0.9 2.7 ± 0.8 2.9 ± 0.9 0.0068
  Pain 2.4 ± 0.8 2.3 ± 0.9 2.4 ± 0.8 0.0239
  Appearance 2.4 ± 0.8 2.3 ± 0.7 2.4 ± 0.8 0.183
  Mental 3.4 ± 0.9 3.4 ± 0.9 3.4 ± 0.9 0.9881
  Satisfaction 2.7 ± 1.1 2.6 ± 1 2.8 ± 1.1 0.1857
  Total 2.8 ± 0.7 2.7 ± 0.6 2.8 ± 0.7 0.0276
Back pain NRS 7.2 ± 2.2 7.4 ± 2.2 7.2 ± 2.2 0.1086
Leg pain NRS 4.5 ± 3.2 5.4 ± 3.2 4.2 ± 3.2 0.0002

Boldface type indicates statistically significant differences between the COMP 
and NOCOMP groups. 
*  Data presented as mean ± standard deviation.

TABLE 6. Variables used in the predictive model

Sex Interbody fusion (yes/no)
(7) SRS-Schwab coronal curve type (5) No. of interbody fusion levels 
(1) Age (19) Iliac crest graft (yes/no) 
BMI (18) BMP (yes/no) 
(15) Revision surgery (yes/no) Max Cobb angle (<30°, 30°–​

60°, >60°)
At least 1 comorbidity (yes/no) Coronal C-7 plumb line distance
No. of comorbidities (13) PT 
(8) CCI (20) PI-LL 
Anemia (yes/no) TK (T2–12)
Depression (yes/no) (14) C-7 SVA 
(12) Osteoporosis (yes/no) (10) T1PA 
Staged surgery (yes/no) (3) ODI 
(11) ASA grade (6) SF-36 PCS 
Rod diameter SF-36 MCS
Rod material (9) SRS activity 
Uppermost instrumented vertebra (16) SRS pain 
Lowermost instrumented vertebra SRS appearance
No. of posterior levels fused SRS mental
Decompression (yes/no) SRS satisfaction
(4) No. of decompression levels (17) SRS total 
Smith-Petersen osteotomy (yes/no) Back pain NRS
No. of Smith-Petersen osteotomies (2) Leg pain NRS 
3-column osteotomy PSO/VCR 

(yes/no)
 

PSO = pedicle subtraction osteotomy; VCR = vertebral column resection.
The top 20 variables in terms of predictive value are numbered in parentheses.
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selected for a given clinical question/hypothesis and type 
of data. Using the wrong statistical test can result in erro-
neous results. Predictive modeling is more flexible due to 
the fact that it relies on the available data. Decision trees 
were used in this setting because of the advantages stated 
above, not because of the type of data and not because of a 
certain hypothesis. Additionally, multiple types of models 
can be constructed to assess which one has the greatest 
utility for the aims of the model, hence the ensemble of 
decision trees that was used.1 One can combine models 
that are similar (or different) to further enhance the goals 
of the model.1 When creating a model one must balance 
accuracy, generalizability, and transparency.1 We have cre-
ated a model that is accurate and theoretically generaliz-
able, yet not transparent. The type of model being built, 
and the balance of the 3 primary characteristics, depends 
on how it will be used when deployed in clinical practice.

There are few predictive models reported in the spine 
literature that Osorio et al. has identified,32 and for the ones 
that do exist, logistic regression is a popular technique that 
produces sets of odds ratios for developing the outcome 
of interest.12,21,24,29,46 Logistic regression is commonly used 
in prediction analysis because it is simple, easy to inter-
pret and apply, and transparent.1 Chapman and colleagues 
consolidated a number of logistic regression models for 
complications following “spine surgery” from 6 different 
peer-reviewed papers into a web-based predictive mod-
el.5,14,19,22,25,26 This was an impressive feat, but in contrast 
to the decision trees used in the present study, there are 
specific limitations to logistic regression. There are a num-
ber of assumptions that must be satisfied to apply logistic 
regression as mentioned above and they generally identify 
variables that are “predictors” without a patient-specific 
interpretation. Our predictive model was constructed in 1 
setting as opposed to 6 different studies with all the vari-
ables in 1 database. It is more efficient, updated with cur-
rent predictive algorithms, is patient specific, and applies 
directly to patients with ASD.

Similar to our methodology, Daubs and colleagues 
performed a decision-tree analysis and used an ensemble 
of 50 decision trees to predict psychological distress in 
spine patients.15 Their model was very successful using 6 
variables and 188 patients, as it was 92% accurate, 92% 
sensitive, and 95% specific.15 And lastly, one of the more 
advanced predictive modeling techniques was deployed by 
Azimi and colleagues in which they created an artificial 
neural network (ANN) to predict 2-year surgical satisfac-
tion in surgical patients for lumbar spinal canal stenosis 
undergoing surgery.3 They compared the ANN to logistic 
regression and found that the use of ANN was more ac-
curate than the logistic regression model. These types of 
studies, in addition to ours, represent the beginning of the 
use of predictive analytics in spine surgery outcomes.4 As 
data sets get larger with time and the quality of the data 
increases, advanced predictive analytics will likely play a 
larger role in clinical decision making.

The strengths of the current study include the multi-
center design and a large number of patients with ASD (n 
= 557). The multicenter design (11 different sites across the 
US) allows for better generalizability of the results. An-
other strength of this study is the complete preoperative 

and 6-week follow-up of the patients as well as the use of 
45 variables. And lastly, modern predictive analytics algo-
rithms were used to create the model, providing a patient-
specific decision-tree ensemble.

However, there are a few limitations to this study, one 
of which includes the retrospective design that may have 
introduced selection or information biases. Another limi-
tation includes combining both intra- and perioperative 
complications as the target variable of interest. Ideally, 
with greater numbers of patients, these intraoperative and 
perioperative complications would be separated out. This 
model is one of the first of its kind and sets the ground-
work for advanced predictive analytics in spinal outcomes 
research.

Conclusions
A successful model (87% accuracy, 0.89 AUROC) was 

built predicting major intra- or perioperative complica-
tions. This model can provide the foundation toward im-
proved education and point-of-care decision making for 
patients undergoing ASD surgery.
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