




K. Yahata et al.

J Neurosurg Spine  Volume 25 • December 2016752

spinal cord.24 Decreased endogenous VEGF expression 
can worsen the pathophysiological process in SCI.24 We 
recently reported that low-energy ESWT significantly in-
creased expression of VEGF in the injured spinal cord.70 
However, it has not been known which type of cells ex-
press VEGF in the injured spinal cord after application of 
low-energy ESWT. The present study demonstrated that 
low-energy ESWT promoted VEGF protein expression in 
various neural cells—such as neurons, astrocytes, and oli-
godendrocytes—after SCI. Therefore, this treatment may 
prevent reduction of endogenous VEGF expression follow-
ing SCI, and it may improve the pathophysiological condi-
tion of the injured spinal cord.

As a proangiogenic growth factor that can also promote 
neurogenesis,18,30 VEGF has been investigated for its abil-
ity to promote axonal repair. In one study, VEGF stimu-
lated axonal regeneration in preparations of sciatic nerves 
in vitro,25 and adenoviral VEGF administration promoted 
regeneration of corticospinal tract axons in rats following 
transection of the spinal cord.12 In addition, VEGF has 
been shown to provide a neuroprotective effect against 
neuronal cell death induced by serum withdrawal, expo-

FIG. 6. White matter sparing in the SCI and SCI-SW groups at 42 days 
after SCI. Representative spinal cord sections at the 1000-μm caudal 
side from the epicenter show that the spared white matter area is rela-
tively smaller in the SCI group (A) than in the SCI-SW group (B). Bar = 
1000 μm. The spared white matter area from the epicenter to 1500 μm 
on the rostral and caudal sides is compared between the SCI and SCI-
SW groups (C). The areas of spared white matter are consistently but 
not significantly larger in the SCI-SW group than in the SCI group at the 
1000- and 1500-μm rostral and 1000- and 1500-μm caudal sides from 
the epicenter and at the epicenter. The values are expressed as the 
mean ± SEM (n = 4 per group). Figure is available in color online only.

FIG. 7. TUNEL staining in SCI and SCI-SW groups at 7 days after SCI. 
Representative sections at the epicenter show that there are obvi-
ously fewer TUNEL-positive cells in the SCI-SW group (B, D, F) than 
in the SCI group (A, C, E). Bar = 200 μm. The schematic drawing (G) 
illustrates the location of the micrographs. H: Bar graph showing that 
the number of TUNEL-positive cells is significantly lower in the SCI-SW 
group than in the SCI group at the 1000-μm rostral side, the epicenter, 
and the 1000-μm caudal side. The values are expressed as the mean ± 
SD (*p < 0.05, n = 4 per group).
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sure to hypoxia, or excitotoxic stimuli in vitro.72 Following 
SCI, treatment with recombinant VEGF also was shown 
to cause improvement in recovery associated with reduced 
apoptosis in the lesion area.69 In this study, low-energy 
ESWT increased VEGF expression and 5-HT–positive 
axons and reduced cell death in the injured spinal cord. 
The ability of VEGF to regenerate axons and suppress cell 
death may be enhanced by low-energy ESWT following 
SCI.

Angiogenesis is an important part of healing in various 
tissues, including the CNS, after lesions. Previous studies 
have indicated that angiogenesis has a critical role in SCI 
repair.50 Lack of local vascular tissue at the injury site hin-
ders the ability of the body to self-heal and limits the use 
of treatment measures. Reducing blood loss, promoting 
new blood vessel formation, and restoring blood supply 
to the lesions may contribute to the recovery from SCI.13 
Recent studies have indicated that angiogenesis has a very 
important role in axonal regeneration after SCI. In addi-
tion, nerve fiber regeneration and synaptic reconstruction, 
tissue repair, and functional recovery after SCI require 
nutritional support provided by blood vessels to nourish 
damaged tissues.47 Intervention by drugs or cells for im-
proving angiogenesis has been shown to promote func-
tional recovery.21,44 Treatment with recombinant VEGF 
improved functional recovery associated with increased 
vessel density after SCI.69 The present study demonstrated 
that low-energy ESWT significantly increased VEGF ex-
pression and angiogenesis in the injured spinal cord and 
promoted functional recovery. The results of this study 
suggested that the therapeutic effect of low-energy ESWT 
for SCI is associated with enhancement of angiogenesis.

Neuropathic pain described as burning, stabbing, and 
electric-shock like occurs in 48%–96% of patients with 
SCI.58,71 Neuropathic pain seriously affects quality of 
life and causes further incapacity. Treatment to attenuate 
neuropathic pain is important for improving the quality 
of life for patients with SCI.14,64 Interestingly, numerous 
studies have reported that administration of neuroprotec-
tive therapy during the acute or subacute phase after SCI 
can improve neuropathic pain in the chronic phase.19,36,51 
The present study demonstrated that applying low-ener-
gy ESWT from the acute to subacute phase actually im-
proved mechanical and thermal allodynia in the chronic 
phase after SCI.

The descending pain modulatory system plays a criti-
cal role in homeostasis and pain control. One of the main 
neurotransmitters implicated in descending pain control is 
serotonin (also called 5-HT).59 A previous study suggested 
that increased 5-HT fiber density immediately rostral to 
the SCI lesion site could reduce mechanical allodynia via 
actions at the 5-HT1 and/or 5-HT2 receptors.43 In addition, 
selective 5-HT receptor agonists inhibited SCI-induced 
hyperalgesia.26 The present study showed that low-energy 
ESWT significantly increased 5-HT–positive axons in the 
rostral spinal cord and attenuated mechanical and thermal 
allodynia in the hindpaw following SCI. These results sug-
gested that low-energy ESWT may promote the descend-
ing pain modulatory system associated with 5-HT axons 
and consequently reduce neuropathic pain after SCI. 
Therefore, this treatment may be a useful therapeutic strat-

egy for reducing not only locomotor impairment but also 
neuropathic pain following SCI.

Promising candidates that may provide effective treat-
ment for SCI repair may involve medication and cell trans-
plantation.32,42 However, any medication essentially involves 
adverse effects. Cell transplantation into the injured spinal 
cord can be an invasive procedure and may pose ethical, lo-
gistical, and safety problems.54 In contrast, a major advan-
tage of low-energy ESWT is that it is noninvasive and safe, 
with no adverse effects or procedural complications.16,41,65 
If necessary, patients with SCI can undergo low-energy 
ESWT repeatedly, and the procedure is easy to perform 
because it does not require induction of anesthesia, cath-
eter intervention, or drug administration. Thus, low-energy 
ESWT has a great advantage over other treatments, and it 
has significant therapeutic potential for patients with SCI.

Conclusions
The present study demonstrated that low-energy ESWT 

promoted VEGF expression in various neural cells and en-
hanced angiogenesis in the injured spinal cord. In addi-
tion, this treatment significantly reduced cell death and ax-
onal damage after SCI. Furthermore, locomotor and sen-
sory functions were significantly improved by low-energy 
ESWT. These results suggested that low-energy ESWT 
can be a novel therapeutic strategy for treatment of SCI.
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