Vancomycin, bone growth, and wound healing

Paul M. Arnold, MD,1 Zoher Ghogawala, MD,2 and Candan Tamerler, PhD3

1Department of Neurosurgery, The University of Kansas Medical Center; 2Department of Mechanical Engineering, The University of Kansas, Kansas City, Kansas; and 3Department of Neurosurgery, Lahey Clinic, Burlington, Massachusetts

P ostoperative wound infections, also known as surgical-site infections, are among the most dreaded complications encountered by spine surgeons. They are associated with increased length of hospital stay, decreased patient satisfaction, and increased morbidity and mortality. In more stark terms, the price of a surgical-site infection can add as much as $100,000 to the cost of care for a single patient event.6,8 CMS (Centers for Medicare and Medicaid Services) treats wound infections as “never events,” which means neither the hospital nor the physician will be reimbursed for the cost of treating this problem. With estimated wound infection rates of 5%–10% for all spine cases, the total cost of managing this complication easily tops $1 billion annually.1,5

Surgeons have several tools to combat this problem, including meticulous surgical technique, minimally invasive procedures, intravenous antibiotics, and early mobilization/rehabilitation. Another potential tool is the intra-wound use of vancomycin, which was developed as one of the first glycopeptide antibiotics. While there have been conflicting reports regarding the efficacy of this treatment, a recent multicenter study of 2000 patients demonstrated a significant reduction in surgical-site infections in patients undergoing posterior spine surgery, even if the patient was at increased risk for infectious complications.2 Extensive beta-lactam resistance also brought attention back to the vancomycin usage for gram-positive infections. The low cost of vancomycin powder (estimated at $40) also makes it a very attractive option.

Some surgeons have been reluctant to use vancomycin, as there have been some concerns that it may be toxic to bone growth and therefore inhibit fusion.3,4,8–10 A paper in this issue of Journal of Neurosurgery: Spine may alleviate some of these fears. Mendoza et al.7 demonstrated that, in a rat spinal fusion model, vancomycin was not inhibitory to bone growth. Animals in this study, a rhBMP model, received either no vancomycin (the control group), standard-dose vancomycin, or high-dose vancomycin (equivalent to 10 times the standard human dosage) applied to the posterolateral fusion bed. Postoperative radiographs, microCTs, and histological analysis showed no statistically significant differences in fusion rates among the 3 groups (in fact, the vancomycin-treated animals actually had higher fusion rates). This novel study demonstrated that vancomycin was not inhibitory to bone growth or fusion at standard or even supratherapeutic doses.

While this study clearly demonstrates that vancomycin does not lead to increased rates of pseudarthrosis, there are some caveats to consider. The authors used a rodent model well known for its fusion success; they also used rhBMP, enhancing the likelihood that fusion would take place. It is therefore possible that by using even a low dose of rhBMP, the inhibitory effect of vancomycin could have been masked, if it existed. If another treatment arm were employed, consisting of autograft and vancomycin, and similar fusion rates were observed, the results would be more convincing. Also, the rhBMP was placed in the posterolateral gutters, which is not an FDA-approved use. It is not clear whether similar results would be achieved if interbody fusion was performed. The experimental design must therefore be kept in mind when interpreting these results.

Nevertheless, despite the design flaws, the authors have shown that, even at very high doses, vancomycin does not appear to inhibit fusion in this particular rodent model.
The next set of studies should look at fusion rates in a non-rhBMP model. In the meantime, these results, combined with the emerging clinical data, show that vancomycin is a viable and perhaps even potent weapon in the campaign against postoperative wound infection.

http://thejns.org/doi/abs/10.3171/2015.12.SPINE151351

References

Disclosures
Dr. Arnold reports direct stock ownership in Evoke Medical and Z-Plasty; a consultant relationship with Medtronic Sofamor Danek, Stryker Spine, and FzioMed; intellectual property rights and interest in Evoke Medical; and sponsorship or reimbursement of travel by Stryker, AOSpine North America, and FzioMed.

Response
Marco C. Mendoza, MD, and Wellington K. Hsu, MD

1Department of Orthopaedic Surgery, Northwestern University; and
2Department of Orthopaedic Surgery, Simpson Querrey Institute for Bionanotechnology and Regenerative Nanomedicine, Northwestern University, Chicago, Illinois

We thank Dr. Arnold, Dr. Ghogawala, and Dr. Tamer- ller for their review and comments regarding our study. As indicated in our Discussion section, the rodent posterolateral fusion model has inherent limitations that prevent the wide applicability of our results to humans, particularly with the use of rhBMP-2. The use of an autograft model would certainly remedy this limitation; however, prior investigations demonstrate its inability to reliably fuse, which is also itself different from the human condition. To this end, based on historical data, the dose of 3.0 µg rhBMP-2 was chosen, specifically, to facilitate fusion rates near 100% but hopefully still capture any potential inhibitory effect of vancomycin. In other words, this was the most appropriate dose chosen to prevent saturation of the effect from a growth factor. We agree that even with these measures taken, there is still a difference in mechanism compared to autograft.

It is true that the experimental design must be kept in mind before applying these results to clinical practice. Although rhBMP-2 is only FDA-approved for anterior lumbar interbody fusions, recent data demonstrates that it is utilized off label in a variety of fusion techniques by spine surgeons, including posterolateral fusions. Therefore, this study still hold value, as it is the only study to date specifically designed to investigate the effect of vancomycin on bone healing.

References