The likelihood of reaching minimum clinically important difference and substantial clinical benefit at 2 years following a 3-column osteotomy: analysis of 140 patients

Shayan Fakurnejad, BS,¹ Justin K. Scheer, BS,¹ Virginie Lafage, PhD,² Justin S. Smith, MD, PhD,³ Vedat Deviren, MD,⁴ Richard Hostin, MD,⁵ Gregory M. Mundis Jr., MD,⁶ Douglas C. Burton, MD,⁷ Eric Klineberg, MD,⁸ Munish Gupta, MD,⁸ Khaled Kebaish, MD,⁹ Christopher I. Shaffrey, MD,³ Shay Bess, MD,¹⁰ Frank Schwab, MD,² Christopher P. Ames, MD,¹¹ and the International Spine Study Group

¹Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois; ²Department of Orthopaedic Surgery, New York University Hospital for Joint Diseases, New York, New York; ³Department of Neurosurgery, University of Virginia Health System, Charlottesville, Virginia; Departments of ⁴Orthopaedic Surgery and ⁵Neurological Surgery, University of California, San Francisco; ⁶San Diego Center for Spinal Disorders, La Jolla; ⁷Department of Orthopaedic Surgery, University of California, Davis, California; ⁸Department of Orthopaedic Surgery, Baylor Scott & White Clinic, Plano, Texas; ⁹Department of Orthopaedic Surgery, University of Kansas Medical Center, Kansas City, Kansas; ¹⁰Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, Maryland; and ¹¹Rocky Mountain Hospital for Children, Denver, Colorado

OBJECT Three-column osteotomies (3COs) are technically challenging techniques for correcting severe rigid spinal deformities. The impact of these interventions on reaching minimum clinically important difference (MCID) or substantial clinical benefit (SCB) is unclear. The objective of this study was to determine the rates of MCID and SCB in standard health-related quality of life (HRQOL) measures after 3COs in patients with adult spinal deformity (ASD). The impacts of location of the uppermost instrumented vertebra (UIV) on clinical outcomes and of maintenance on sagittal correction at 2 years postoperatively were also examined.

METHODS The authors conducted a retrospective multicenter analysis of the records from adult patients who underwent 3CO with complete 2-year radiographic and clinical follow-ups. Cases were categorized according to established radiographic thresholds for pelvic tilt (> 22°), sagittal vertical axis (> 4.7 cm), and the mismatch between pelvic incidence and lumbar lordosis (> 11°). The cases were also analyzed on the basis of a UIV in the upper thoracic (T1–6) or thoracolumbar (T9–L1) region. Patient-reported outcome measures evaluated preoperatively and 2 years postoperatively included Oswestry Disability Index (ODI) scores, the Physical Component Summary and Mental Component Summary (MCS) scores of the 36-Item Short Form Health Survey, and Scoliosis Research Society-22 questionnaire (SRS-22) scores. The percentages of patients whose outcomes for these measures met MCID and SCB were compared among the groups.

ABBREVIATIONS ASD = adult spinal deformity; HRQOL = health-related quality of life; ISSG = International Spine Study Group; MCID = minimum clinically important difference; MCS = Mental Component Summary; ODI = Oswestry Disability Index; PCS = Physical Component Summary; PI-LL = mismatch between pelvic incidence and lumbar lordosis; PSO = pedicle subtraction osteotomy; SCB = substantial clinical benefit; SRS-22 = Scoliosis Research Society–22 questionnaire; SF-36 = 36-Item Short Form Health Survey; SVA = sagittal vertical axis; UIV = uppermost instrumented vertebra; VCR = vertebral column resection; 3CO = 3-column osteotomy.

INCLUDE WHEN CITING Published online June 19, 2015; DOI: 10.3171/2014.12.SPINE141031.

DISCLOSURE The International Spine Study Group Foundation, through which this study was conducted, is funded through research grants from DePuy Spine and individual donations. Dr. Ames is a consultant for DePuy, Medtronic, and Stryker; owns stock in Doctors Research Group and Baxano Surgical; holds patents with Fish & Richardson, P.C.; and has received royalties from Aesculap and Biomet Spine. Dr. Smith is a consultant for Biomet, NuVasive, and Cerapedics and has received teaching honoraria from Globus, Medtronic, and DePuy. Dr. Deviren is a consultant for Guidepoint, NuVasive, and Stryker. Dr. Lafage is a consultant for Medicrea and teaches and presents for DePuy, K2M, NuVasive, and Nemaris INC. Dr. Schwab is a consultant for MSD, K2M, DePuy, and Medicrea; receives clinical and research support from DePuy, MSD, and AO; holds patents with MSD, Nemaris, K2M, and NuVasive; and teaches and presents for MSD, Nemaris INC, and K2M. Dr. Burton is a consultant for the State Department, holds patents with, and receives clinical or research support from NuVasive Spine. Dr. Hostin is a consultant for DePuy; receives clinical and research support from DePuy, NuVasive, Seeger, DJO, and K2M. Dr. Gupta is a consultant for DePuy, Medtronic, and Medicrea; owns stock in Johnson and Johnson, Pfizer, Proctor and Gamble, and Pioneer; and serves as a treasurer and board member for DePuy. Dr. Bess is a consultant for K2M, Alosource, and NuVasive and receives clinical and research support from DePuy, Medtronic, and Innovasis. Dr. Mundis is a consultant for NuVasive, K2M, Misonix, and Medicrea and serves as a board member for K2M and NuVasive. Dr. Klineberg has received speaker’s fees and fellowship grants from DePuy Synthes, and AOspine and has received an OREF grant. Dr. Shaffrey is a consultant for Biomet, Globus, Medtronic, NuVasive, and Stryker; owns stock in NuVasive; and holds patents with and receives royalties from Biomet, Medtronic, and NuVasive.
RESULTS Data from 140 patients (101 women and 39 men) were included in the analysis; the average patient age was 57.3 ± 12.4 years (range 20–82 years). Of these patients, 94 had undergone only pedicle subtraction osteotomy (PSO) and 42 only vertebral column resection (VCR); 113 patients had a UIV in the upper thoracic (n = 63) or thoracolumbar region (n = 50). On average, 2 years postoperatively the patients had significantly improved in all HRQOL measures except the MCS score. For the entire patient cohort, the improvements ranged from 57.6% for the SRS-22 pain score MCID to 24.4% for the ODI score SCB. For patients undergoing PSO or VCR, the likelihood of their outcomes reaching MCID or SCB ranged from 24.3% to 62.3% and from 16.2% to 47.8%, respectively. The SRS-22 self-image score of patients who had a UIV in the upper thoracic region reached MCID significantly more than that of patients who had a UIV in the thoracolumbar region (70.6% vs 41.9%, p = 0.0281). All other outcomes were similar for UIVs of upper thoracic and thoracolumbar regions. Comparison of patients whose spines were above or below the radiographic thresholds associated with disability indicated similar rates of meeting MCID and SCB for HRQOL at the 2-year follow-up.

CONCLUSIONS Outcomes for patients having UIVs in the upper thoracic region were no more likely to meet MCID or SCB than for those having UIVs in the thoracolumbar region, except for the MCID in the SRS-22 self-image measure. The HRQOL outcomes in patients who had optimal sagittal correction according to radiographic thresholds determined preoperatively were not significantly more likely to reach MCID or SCB at the 2-year follow-up. Future work needs to determine whether the Schwab preoperative radiographic thresholds for severe disability apply in postoperative settings.

KEY WORDS 3-column osteotomy; pedicle subtraction osteotomy; vertebral column resection; spinal deformity; minimum clinically important difference; substantial clinical benefit; spinal disorders
Methods

Patient Population

Using a multicenter ASD database, we conducted a retrospective review of the medical records of 140 patients who underwent a 3CO. Patients were drawn from the International Spine Study Group (ISSG), which is composed of 11 sites across the United States. Internal review board approval was obtained through each of the member sites contributing patients’ records. Inclusion criteria for the ISSG database were the following: age ≥ 18 years and presence of spinal deformity, defined by a scoliotic Cobb angle ≥ 20°, sagittal vertical axis (SVA) ≥ 5 cm, pelvic tilt ≥ 25°, or thoracic kyphosis ≥ 60°. Exclusion criteria included spinal deformity stemming from a neuromuscular etiology and presence of an active infection or malignant disease.

Patients were categorized into 2 groups according to the anatomical location of their UIV procedure as upper thoracic or thoracolumbar. A UIV in the upper thoracic region was defined as a fixation terminating between T-1 and T-6 and a UIV in the thoracolumbar region as a fixation between T-9 and L-1. Patients were also categorized according to the type of 3CO they received, that is, either a PSO or a VCR. All patients underwent complete baseline examinations and 2-year clinical and radiographic follow-ups.

Data Collection, Radiographic Assessment, and Classification

Demographic and surgical data collected included patient age, sex, body mass index, fixation levels, PSO/VCR sites, operating room time, estimated blood loss, and revision surgery indications. All radiographic measures were performed at a central location with standard techniques Spineview, ENSAM, Laboratory of Biomechanics) and included SVA (that is, C-7 plumb line relative to S-1), pelvic tilt, and the mismatch between pelvic incidence and lumbar lordosis (PI-LL, that is, the Cobb angle between the superior endplate of L-1 and the superior endplate of S-1). Proximal junctional kyphosis was also considered, and its angle was defined as the Cobb measurement between the caudal endplate of the UIV to the cranial endplate 2 vertebrae above. Abnormal radiographic proximal junctional kyphosis was defined as a proximal junctional angle > 10° and at least 10° greater than the corresponding preoperative angle.

Radiographic thresholds that predict severe disability (that is, an Oswestry Disability Index [ODI] score ≥ 40) have been previously established and include an SVA of 47 cm, a pelvic tilt of 22°, and PI-LL of 11°. On the basis of these thresholds, patients who underwent a PSO were grouped as follows: 1) being either above or below the pelvic tilt threshold at the 2-year follow-up for patients whose spine was above the pelvic tilt threshold preoperatively, 2) being either above or below the SVA threshold at the 2-year follow-up for patients whose spine was above the SVA threshold preoperatively, 3) being either above or below the PI-LL threshold at the 2-year follow-up for patients whose spine was above the PI-LL threshold preoperatively, and 4) being either above or below all 3 of the thresholds at the 2-year follow-up for patients whose spine was above all 3 of the thresholds preoperatively.

Health-Related Quality of Life

The HRQOL measures included the scores from the ODI, the 36-Item Short Form Health Survey (SF-36), and the Scoliosis Research Society–22 questionnaire (SRS-22). Two standard summary scores were calculated according to the SF-36: the Physical Component Summary (PCS) and the Mental Component Summary (MCS) scores. The SRS-22 provides a total score and those from 5 subdomains, including activity, pain, self-image, mental, and satisfaction. To increase the clinical applicability of the HRQOL outcomes, MCID values for these measures have been previously established. The SCB values for the ODI score and the PCS score have also been established and were considered for the current study. The MCID and SCB values used in the present study were as follows: an ODI score MCID of −15 and an ODI score SCB of −18.8, a PCS score MCID of 5.2 and a PCS score SCB of 6.2, an SRS activity score MCID of 0.375, an SRS pain score MCID of 0.587, an SRS self-image score MCID of 0.8, and an SRS mental score MCID of +0.42.

Statistical Analyses

Continuous variables are presented as the mean and SD. An ANOVA or the Kruskal-Wallis test and the Student t-test or Wilcoxon rank-sum test were used as appropriate. Frequency analysis was used for categorical variables. The percentages of patients whose outcomes met MCID or SCB for the HRQOL measures were compared among the respective study groups (above or below the radiographic thresholds) with chi-square analyses. The upper thoracic and thoracolumbar analyses, as well as the postoperative threshold analysis, were conducted with patients who underwent only PSO, as most of these patients underwent correction for sagittal malalignment. A preliminary analysis revealed that data from only a few VCR patients were available for analysis because most of these patients had no preoperative sagittal malalignment, and these patients were therefore omitted from further analyses. The level of statistical significance for all comparisons was set at p < 0.05. All data were analyzed with commercially available statistical software (JMP v11.0, SAS Institute, Inc.).

Results

Patients and Procedures

In total, data from 140 patients were analyzed in this study (101 women and 39 men); the average age of these patients was 57.3 ± 12.4 years (range 20–82 years). Complete baseline and 2-year radiographic and HRQOL data were available for all patients; 95 of the patients underwent a PSO performed between T-7 and L-5, and 45 underwent a VCR between T-4 and L-5. Among the patients who underwent a PSO, 3 underwent a second 3CO (2 underwent another PSO and 1 underwent a VCR at L-5); thus, 94 patients underwent 1 or more PSOs. Of the patients who underwent a VCR, 6 underwent a second 3CO (3 patients underwent a PSO at T-11, L-5, or S-1, and 3 had another VCR at T-7, T-11, or L-4); thus, in total 42 patients underwent 1 or more VCRs. In total, 113 (80.7%) of the 140 patients underwent a UIV procedure terminating in either the upper thoracic or the thoracolumbar

Unauthenticated | Downloaded 10/07/23 01:16 PM UTC
region; patients who underwent a UIV procedure not in one of these regions were excluded from the analysis. Of the included UIV patients, 78 (69.0%) were women and 35 (31.0%) were men, with an average age of 58.7 ± 11.7 years (range 21–82 years); 63 patients fell into the upper thoracic group and 50 into the thoracolumbar group. Average age, body mass index, operating time, and estimated blood loss are reported in Table 1.

In total, 53 patients (37.9%) underwent at least 1 revision surgery (range 1–6 revisions) within 2 years after the initial 3CO, resulting in a total of 97 revisions. Of these, 54 (55.7%) were performed for mechanical reasons, which included implant failure, pseudarthrosis, and proximal junctional kyphosis. The remaining 43 revisions addressed neurological deficits, sagittal malalignment, wound infection, or instrumentation pain. Thirty-three patients (35.1%) in the PSO group had at least 1 revision (range 1–3 revisions), resulting in a total of 46 revisions, and 18 patients (42.9%) in the VCR subpopulation underwent at least one revision (range 1–6 revisions), resulting in a total of 43 revisions.

Twelve patients (8.6% of all patients) underwent a revision surgery for abnormal proximal junctional kyphosis, 8 (66.7%) of whom were patients who underwent a PSO (8.4% of the PSO subcohort) and 2 of whom were patients who underwent a VCR (4.8% of the VCR subcohort). A similar proportion of patients in the upper thoracic and thoracolumbar surgery groups underwent a revision surgery (p > 0.05). Eight patients underwent a revision for abnormal proximal junctional kyphosis. Of these patients, 5 (62.5%) underwent revision in the thoracolumbar region, and 3 (37.5%) in the upper thoracic region (p > 0.05); 2 of the 5 patients with thoracolumbar revisions for proximal junctional kyphosis underwent revision twice.

Overall HRQOL Scores and MCID and SCB

At the 2-year follow-up, the combined data from the patients who underwent POS or VCR indicated a significant (p < 0.05) improvement in all HRQOL measures with the exception of the MCS score (p > 0.05, Table 2). Broken down by type of surgery, patients who underwent a PSO significantly improved in all HRQOL measures (p < 0.05) with the exception of the MCS score and the SRS mental score (p > 0.05 for both). The VCR patients significantly improved only in the SRS self-image, satisfaction, and total scores (p < 0.05 for all 3 scores).

For patients undergoing PSO only, the HRQOL measure that reached MCID in the greatest percentage of patients was the SRS pain score (62.3%) (Table 3), and the measure that reached MCID least frequently was the ODI score (34.9%). Moreover, in 45.9% of the PSO patients, the PCS score met SCB, but only in 26.5% of these patients did the ODI score meet SCB. For patients undergoing only VCR, the HRQOL measure that reached MCID most frequently (in 57.9% of the patients) was the SRS self-image score. Similar to the PSO group, among the patients who underwent VCR, a greater percentage had PCS scores meeting SCB than ODI scores meeting SCB. Compared with patients who did not undergo revisions, similar percentages of patients in both surgical groups who underwent revision surgery within the 2-year postoperative period had HRQOL outcomes that reached MCID and SCB (p > 0.05 for all).

Effect of PSO-UIV Surgery on HRQOL

On average, the cohort undergoing only PSOs (n = 94, both upper thoracic and thoracolumbar groups) significantly improved in all HRQOL outcomes (p < 0.05 for both groups) except in the MCS score and the SRS function score; the thoracolumbar patients also had no improvement in the SRS mental score (p > 0.05). Both the upper thoracic and thoracolumbar groups had similar HRQOL values for all outcomes measured preoperatively (Fig. 1). The upper thoracic and thoracolumbar groups had similar percentages of patients whose outcomes met MCID and SCB (p > 0.05 for all), except for the SRS self-image score for which a significantly greater percentage of patients undergoing operations in the upper thoracic regions had outcomes that reached MCID (71.9% vs 46.0%, p = 0.0281; Table 4).

Postoperative Spinal Alignment and HRQOL Scores and MCID and SCB in PSO Patients

Of the patients who underwent only PSO (n = 94), 78 (83.0%) had spines that were above the pelvic tilt threshold related to disability (that is, an angle > 22°) preoperatively, 78 (83.0%) above the SVA threshold of 4.7 cm, 75 (79.8%) above the PI-LL threshold of > 11°, and 67 (71.3%) were above all 3 thresholds. The patient numbers and percentages in each of these 3 groups whose spines remained above or were corrected below the thresholds at the 2-year follow-up are listed in Table 5. Most operated spines remained above the thresholds for all groups with the exception of the PI-LL group in which most spines (62.7%) were corrected to below these thresholds.

A comparison of patients whose spines were preoperatively above the radiographic thresholds related to disability and were above or below these thresholds at the 2-year follow-up revealed that those with spines above the pelvic tilt threshold of 22° at the 2-year follow-up had significantly worse preoperative ODI scores (50.6 ± 17.8 vs 41.1 ± 16.4, p = 0.039; Fig. 2). For SVA, those whose spines were

Table 1. Demographic data and operative results for patients who underwent either PSO or VCR

<table>
<thead>
<tr>
<th>Factor</th>
<th>PSO</th>
<th>VCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of pts</td>
<td>94</td>
<td>42</td>
</tr>
<tr>
<td>Age in yrs</td>
<td>59.7 ± 12.3</td>
<td>52.3 ± 11.4</td>
</tr>
<tr>
<td>M/F ratio</td>
<td>26:68</td>
<td>11:31</td>
</tr>
<tr>
<td>BMI</td>
<td>29.9 ± 7.1</td>
<td>27.4 ± 5.5</td>
</tr>
<tr>
<td>Op time (mins)</td>
<td>458.4 ± 145.5</td>
<td>457.9 ± 137.4</td>
</tr>
<tr>
<td>EBL (L)</td>
<td>3.0 ± 2.1</td>
<td>2.9 ± 1.6</td>
</tr>
<tr>
<td>No. of pts w/ UT UIV</td>
<td>41</td>
<td>22</td>
</tr>
<tr>
<td>No. of pts w/ TL UIV</td>
<td>43</td>
<td>5</td>
</tr>
</tbody>
</table>

BMI = body mass index, EBL = estimated blood loss; pts = patients; TL = thoracolumbar; UT = upper thoracic.
* Patients in these 2 groups underwent the indicated procedure both in the initial operation and in any revisions. Values represent mean ± SD, unless indicated otherwise.
above the thresholds had significantly worse preoperative ODI scores (52.6 ± 14.6 vs 42.7 ± 18.0, p = 0.019; Fig. 2) and SRS pain scores (2.1 ± 0.7 vs 2.5 ± 0.8, p = 0.023). No significant preoperative differences were observed between above and below the radiographic thresholds for the PI-LL group and all patients (p > 0.05 for all comparisons). Moreover, no significant differences were observed in any of the groups for the PCS score (Fig. 3) or other the HRQOL scores (p > 0.05 for all comparisons).

Assessment of the adequacy of radiographic correction at the 2-year follow-up revealed that, in cases in which the spines were adequately corrected, most HRQOL measures reached MCID and SCB at the 2-year follow-up; however, this difference did not reach statistical significance (p > 0.05; Table 6), except for 3 comparisons: statistically significant differences in the percentage of patients whose outcomes reached MCID were observed for the SRS self-image score in the pelvic tilt group (p = 0.0419), the SRS pain score in the PI-LL group (p = 0.0056), and for the SRS function score in the All group (p = 0.0312). No significant differences in HRQOL outcomes were detected in the SVA group (p > 0.05 for all comparisons).

Discussion

Adult spinal deformity remains a serious clinical challenge, and the current surgical techniques for managing this condition are technically demanding. Techniques such as 3COs, including PSO and VCR, improve function, quality of life, and overall health for patients having an ASD.17,19,23–25,27,29,30,39 However, these technically demanding and complex procedures may result in complications or in loss of spinal correction over time.6–8,15,17,35 The results of the present study indicate that rates of HRQOL measures reaching MCID or SCB after a 3CO are low; the highest rate was 62.3% for the SRS pain score MCID in patients who underwent PSO and the lowest was 24.3% for the ODI score MCID in patients undergoing VCR. The SCB range was even lower at 16.2%–47.8%. In addition, our results suggest that termination of the UIV in either the upper thoracic or the thoracolumbar region does not influence the rate of outcomes meeting MCID or SCB, with the exception of the SRS self-image score. Moreover, patients with optimal spinal correction had better HRQOL scores at 2 years postoperatively. However, outcomes in patients with suboptimal spinal correction had rates of meeting MCID and SCB in HRQOL measures that were similar to those in patients whose spines maintained correction at 2 years. In addition, we observed that revision surgery for major complications had no detectable impact on these outcomes meeting MCID or SCB.

Ultimately, the percentage of patients undergoing 3CO whose HRQOL measures reached MCID or SCB was less than satisfactory. This may be a result of several factors. First, the thresholds for MCID and SCB in HRQOL were established in a population of patients with lumbar degenerative disease and adolescent idiopathic scoliosis, limiting their use in other patient populations. No study to date has determined MCID and SCB values in ASD patients or in adults undergoing 3COs. Thus, it is possible that the rates of reaching MCID or SCB could have been higher had we used threshold values for these outcome indicators specific for the present population. However, because these specific thresholds have yet to be determined, the currently available values were the best clinical instruments for the present study and may permit comparison with other ASD studies that have used them.

The positive outcome rates reported here are lower than previously reported rates for ASD patients. Liu et al., studying surgical outcomes in 464 ASD patients, showed that surgical intervention significantly increases the likelihood of patients improving across multiple HRQOL measures and their outcomes meeting MCID relative to pa-

Table 2. The mean preoperative and 2-year follow-up HRQOL scores for the patients who underwent either a single-level PSO or a VCR

<table>
<thead>
<tr>
<th>Procedure & Time Point</th>
<th>MCS Score</th>
<th>PCS Score*</th>
<th>Pain*</th>
<th>Function*</th>
<th>Self-Image†</th>
<th>Mental</th>
<th>Satisfaction†</th>
<th>Total†</th>
<th>ODI Score*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO Preop</td>
<td>44.8 ± 14.2</td>
<td>30.0 ± 9.2</td>
<td>2.4 ± 0.8</td>
<td>2.7 ± 0.8</td>
<td>2.2 ± 0.8</td>
<td>3.3 ± 1.0</td>
<td>2.7 ± 1.1</td>
<td>2.7 ± 0.7</td>
<td>46.3 ± 18.3</td>
</tr>
<tr>
<td>2-yr FU</td>
<td>46.0 ± 13.3</td>
<td>36.9 ± 11.1</td>
<td>3.1 ± 1.0</td>
<td>3.1 ± 1.0</td>
<td>3.3 ± 1.0</td>
<td>3.6 ± 0.9</td>
<td>3.9 ± 1.1</td>
<td>3.3 ± 0.8</td>
<td>35.8 ± 21.0</td>
</tr>
<tr>
<td>VCR Preop</td>
<td>45.0 ± 14.0</td>
<td>33.7 ± 10.3</td>
<td>2.8 ± 0.9</td>
<td>3.1 ± 1.0</td>
<td>2.3 ± 0.7</td>
<td>3.5 ± 0.9</td>
<td>2.7 ± 1.2</td>
<td>2.9 ± 0.7</td>
<td>33.8 ± 17.8</td>
</tr>
<tr>
<td>2-yr FU</td>
<td>47.2 ± 12.0</td>
<td>38.3 ± 10.2</td>
<td>3.1 ± 1.0</td>
<td>3.2 ± 1.1</td>
<td>3.3 ± 1.0</td>
<td>3.8 ± 0.8</td>
<td>3.9 ± 1.0</td>
<td>3.4 ± 0.8</td>
<td>30.4 ± 17.6</td>
</tr>
</tbody>
</table>

FU = follow-up.
* PSO patients showed statistically significant improvement in this score (p < 0.05).
† Both PSO and VCR patients showed statistically significant improvement in this score (p < 0.05).

Table 3. The percentages of patients whose outcomes reached MCID or SCB for the various HRQOL measures, broken down by surgical procedure

<table>
<thead>
<tr>
<th>Measure</th>
<th>PSO (%)</th>
<th>VCR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCID PCS score</td>
<td>50.0</td>
<td>47.8</td>
</tr>
<tr>
<td>SRS score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td>62.3</td>
<td>47.4</td>
</tr>
<tr>
<td>Function</td>
<td>56.4</td>
<td>37.8</td>
</tr>
<tr>
<td>Self-image</td>
<td>56.4</td>
<td>57.9</td>
</tr>
<tr>
<td>Mental</td>
<td>42.9</td>
<td>41.7</td>
</tr>
<tr>
<td>ODI score</td>
<td>34.9</td>
<td>24.3</td>
</tr>
<tr>
<td>SCB PCS score</td>
<td>45.9</td>
<td>47.8</td>
</tr>
<tr>
<td>ODI score</td>
<td>26.5</td>
<td>16.2</td>
</tr>
</tbody>
</table>
patients undergoing nonsurgical treatments. The number of 3CO procedures in the cohort studied by Copay et al. is unclear; however, in the surgical cohort, the maximum MCID rate among patients was 74% for the SRS self-image score, and the lowest was 43% for the SRS mental score. In the present study, across the entire patient cohort we observed a maximum MCID rate of 57.6% for the SRS pain score and a minimum MCID rate of 24.4% for the ODI score. The reasons for the lower MCID rates in patients who underwent 3COs may include a larger magnitude of the spinal deformity than in patients not requiring a 3CO, undergoing a more extensive operation with a possibly longer and more complicated postoperative course, and poor maintenance of spinal correction in the PSO group. Most patients above a certain radiographic threshold remained above that threshold at the 2-year follow-up. The present study did not attempt to study the above possibilities, but rather serves as a groundwork to report initial MCID and SCB values in populations of spine patients such as 3CO patients.

Schwab et al. have previously established radiographic thresholds indicating severe disability. These values were determined according to baseline HRQOL values in surgical and nonsurgical patients, and the impact of surgical correction on these thresholds is unclear. Thresholds for postoperative correction and how they may affect HRQOL may be beneficial for assessing the clinical course of ASD patients. Here, we have shed some light on the applicability of the existing radiographic thresholds for severe disability and their role in influencing HRQOL values. Future work should be aimed at determining whether postoperative thresholds for severe disability differ from those existing preoperatively.

TABLE 4. The percentages of patients who underwent a PSO and whose HRQOL measures met an MCID or a SCB at the 2-year follow-up, broken down by location of the operation (upper thoracic or thoracolumbar)

<table>
<thead>
<tr>
<th>Measure</th>
<th>UT (%)</th>
<th>TL (%)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS score</td>
<td>43.3</td>
<td>58.8</td>
<td>0.215</td>
</tr>
<tr>
<td>SRS score</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td>65.6</td>
<td>66.7</td>
<td>0.928</td>
</tr>
<tr>
<td>Function</td>
<td>53.1</td>
<td>59.5</td>
<td>0.597</td>
</tr>
<tr>
<td>Self-image*</td>
<td>71.9</td>
<td>46.0</td>
<td>0.028</td>
</tr>
<tr>
<td>Mental</td>
<td>46.9</td>
<td>41.0</td>
<td>0.666</td>
</tr>
<tr>
<td>ODI score</td>
<td>31.4</td>
<td>41.0</td>
<td>0.391</td>
</tr>
<tr>
<td>SCB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCS score</td>
<td>43.3</td>
<td>50.0</td>
<td>0.594</td>
</tr>
<tr>
<td>ODI score</td>
<td>25.7</td>
<td>28.2</td>
<td>0.810</td>
</tr>
</tbody>
</table>

* The percentages for both groups were statistically significantly different from the preoperative percentages.

TABLE 5. The number and percentage of PSO patients (n = 94) above or below the radiographic-measure thresholds associated with severe disability (ODI score of ≥ 40) preoperatively and at 2 years postoperatively

<table>
<thead>
<tr>
<th>Radiographic Measure</th>
<th>Preop Above</th>
<th>Above Threshold</th>
<th>Below Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>78</td>
<td>53 (67.9)</td>
<td>25 (32.1)</td>
</tr>
<tr>
<td>SVA</td>
<td>78</td>
<td>40 (51.3)</td>
<td>38 (48.7)</td>
</tr>
<tr>
<td>PI-LL</td>
<td>75</td>
<td>28 (37.3)</td>
<td>47 (62.7)</td>
</tr>
<tr>
<td>All</td>
<td>67</td>
<td>18 (26.9)</td>
<td>12 (17.9)</td>
</tr>
</tbody>
</table>

PT = pelvic tilt; All = patients either above all 3 thresholds or below all 3 thresholds.

* Percentages are given in parentheses and were calculated on the basis of the number of patients whose spines were above the indicated threshold preoperatively.
The optimal proximal stopping point for long posterior fixations continues to be debated. Despite many studies demonstrating that ASD correction improves HRQOL, few reports have investigated the effects of the UIV on HRQOL.9,13 Moreover, to our best knowledge, ours is the first study investigating both UIV and SCB in patients undergoing 3COs. Ha et al., studying HRQOL outcomes among 89 ASD patients undergoing proximal and distal UIV for treating proximal junctional kyphosis and who were followed up for at least 2 years, reported similar clinical outcomes for the distal and proximal UIV groups.13 However, the study included only 19 patients who underwent PSOs and none who underwent VCRs, and MCIDs and SCBs were not reported. Similarly, Kim et al. specifically investigated UIV and HRQOL outcomes in a large ASD population.9,16 The authors showed that 91 patients with UIVs terminating in the upper thoracic region (that is, in T2–4) and 107 patients with UIVs terminating in the lower thoracic regions (that is, in T10–L2), had similar clinical outcomes at the 2-year follow-up. The only postoperative difference the authors noted was the 1-year SRS image score, which was higher in the patients undergoing a UIV procedure in the upper thoracic region. However, these differences had been normalized by the 2-year follow-up.

Our results were similar to those reported previously in that all HRQOL values were similar among the groups, with patients in the upper thoracic group having a higher SRS self-image score both at 2-year follow-up and having a greater likelihood of their outcomes reaching MCID. That outcomes in our patient cohort did not normalize by the 2-year follow-up can likely be attributed to our study’s strict focus on patients undergoing PSO, a surgical intervention used for those with severely sagittally malaligned spines. Furthermore, this is a reasonable result, as patients requiring fixation terminating in the upper thoracic region may generally have a greater coronal deformity or overall sagittal malalignment of their spine. Thus, a large spinal correction greatly improves a patient’s reported HRQOL in regards to self-image. Unfortunately, the location and magnitudes of any coronal curves was not available from the data, and this lack of data represents a limitation of this study.

The present study attempted to evaluate the importance of optimal sagittal correction on improving clinical status. To date, no study has directly investigated the Schwab radiographic thresholds postoperatively or in patients who underwent a PSO. A study similar to ours by Blondel et al. involved 76 patients whose outcomes were analyzed on the basis of the magnitude of SVA correction and its impact on the likelihood of these patients’ outcomes exceeding MCID.4 These authors found that substantial or complete correction of an SVA significantly improved the rates of reaching MCID for the ODI and PCS scores and the SCB for the ODI score.

Blondel et al. set substantial curve correction as a 66% or greater improvement from preoperative SVA. However, it is unclear how many of the patients in that study underwent a 3CO, and the authors examined only the SVA. The SVA is often considered the most influential radiographic parameter for HRQOL measures, but because total sagittal alignment is the ultimate goal of 3COs, it is crucial to correlate clinical outcomes with more extensive radiographic measures. Therefore, the present study examined the 3 thresholds most associated with disability, that is, pelvic tilt, SVA, and PI-LL.32 In contrast to the study by Blondel and colleagues, we did not observe any statistical significant difference among the MCID and SCB rates when comparing patients’ outcomes either above or below each of these 3 radiographic thresholds at the 2-year follow-up. However, more often than not, patients below 1 of the 3 thresholds at 2 years postoperatively had higher rates of outcomes meeting MCID or SCB for a given HRQOL measure, especially in the All group. It is therefore possible that these radiographic thresholds commonly used preoperatively may not have the same effects postoperatively or that the ODI score cutoff to determine these thresholds may not be ≥40 as originally established in the literature.32

The strengths of the current study include its multi-center design and complete 2-year follow-up of the patients. The patients included in this study were from 11
different sites across the country and underwent procedures performed by multiple surgeons, indicating generalizability of the results. Potential variation in the radiographic measurements was minimized because all of them were performed at a single center with standardized image analysis software. However, this study is not without limitations. These include its retrospective design and that the MCID values used in this study were originally established in a population of patients with lumbar degenerative disease and adolescent idiopathic scoliosis. As a result, the generalizability of these MCID values is limited, but until a prospective study defining MCID values for HRQOL in ASD patients is produced, the current values are the best clinical instruments for studies such as ours. In addition, the lack of information about the location and magnitude of any coronal curves is a limitation, as this information may have played a role in patient selection for upper thoracic or thoracolumbar UIV. Looking ahead, additional insight into the importance of optimal correction on clinical outcomes may be gained from a prospective study with a larger patient cohort.

Conclusions

For patients who underwent a 3CO, the likelihood of their HRQOL measures reaching an MCID and a SCB ranged from 24.3% to 62.3% and 16.2% to 47.8%, respectively. Patients who underwent a UIV procedure terminating in the upper thoracic region were no more likely to have outcomes reaching MCID or SCB compared with patients who underwent a UIV procedure in the thoracolumbar region, except for the MCID in the SRS self-image score. In addition, outcomes in patients whose spines had optimal sagittal correction according to radiographic thresholds determined pre- and postoperatively were not significantly more likely to reach MCIDs or SCBs. Future work is needed to determine whether the Schwab preoperative radiographic thresholds for severe disability apply in postoperative settings.

References

Author Contributions

Conception and design: Ames. Acquisition of data: Lafage. Analysis and interpretation of data: Fakurnejad, Scheer. Drafting the article: Fakurnejad, Scheer. Critically revising the article: Fakurnejad, Scheer, Lafage, Smith, Burton, Klineberg, Shaffrey, Ames. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Fakurnejad. Statistical analysis: Fakurnejad, Scheer.

Correspondence

Shuyan Fakurnejad, Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine, 676 N. St. Clair St., Ste. 2210, Chicago, IL 60611. email: sfakurnejad7@gmail.com.