Surgical outcome of tuberculous meningitis hydrocephalus treated by endoscopic third ventriculostomy: prognostic factors and postoperative neuroimaging for functional assessment of ventriculostomy

Clinical article

ASHISH CHUGH, M.Ch.,1 MAZHAR HUSAIN, M.Ch.,1 RAKESH K. GUPTA, M.D.,2 BAL K. OJHA, M.Ch.,1 ANIL CHANDRA, M.Ch.,1 AND MANU RASTOGI, M.Ch.1

1Department of Neurosurgery, Chhatrapati Shahaji Maharaj Medical University; and 2Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Object. Endoscopic third ventriculostomy (ETV) is increasingly being used as an alternative treatment for post–tuberculous meningitis (TBM) hydrocephalus. The aim of this study was to affirm the role of ETV in patients with TBM hydrocephalus and also to study the usefulness of cine phase-contrast MR imaging (cine MR imaging) for functional assessment of the ETV stoma. An additional goal was to identify factors that influence the outcome of ETV, so as to define patients with TBM hydrocephalus in whom ETV is warranted.

Methods. Twenty-six patients with TBM hydrocephalus treated with ETV were evaluated clinically and with cine MR imaging postoperatively. The duration of follow-up ranged from 1 to 15 months. The authors evaluated flow void changes in the floor of the third ventricle and analyzed parameters from the preoperative data, which they then used as a basis for comparison between endoscopically successful and endoscopically unsuccessful cases.

Results. The overall success rate of ETV in TBM hydrocephalus was 73.1% in this case series. Cine MR imaging showed a sensitivity of 94.73% and specificity of 71.42% for the functional assessment of third ventriculostomy in these patients, with the efficacy being maintained during follow-up. The outcome of ETV showed a statistically significant correlation with the stage of illness and presence of intraoperative cisternal exudates. Although duration of symptoms and duration of preoperative antituberculous therapy (ATT) appeared to influence the outcome, their correlation with outcome was not statistically significant.

Conclusions. Endoscopic third ventriculostomy should be considered as the first surgical option for CSF diversion (that is, before shunt surgery) in patients with TBM hydrocephalus. Cine MR imaging is a highly effective noninvasive tool for the postoperative functional assessment of stomata. Patients who presented with a history of longer duration and those who were administered preoperative ATT for a longer period had a better outcome of endoscopic treatment. Outcome was poorer in patients who presented with higher stages of illness and in those in whom cisternal exudates were observed intraoperatively. (DOI: 10.3171/2009.1.PEDS0947)

Key Words • endoscopic third ventriculostomy • tuberculous meningitis hydrocephalus • cine phase-contrast MR imaging

TUBERCULOUS meningitis remains a problem in most Asian countries and is now becoming an important illness in the developed world due to migration.6,22 Endoscopic third ventriculostomy is emerging as a line of treatment for TBM hydrocephalus.6,13,22 It is essential to ensure that the ventriculostomy is effective, as early blockage of the stoma may lead to neurological deterioration. There is also a need for definition of the population of patients with TBM hydrocephalus who would benefit from ETV in order to optimize outcome in these cases.

Methods

We conducted a prospective study of 26 cases of TBM in which the patients had hydrocephalus and were either
admitted to the Department of Neurosurgery, Chhatrapati Shahuji Maharaj Medical University (upgraded King George's Medical University), Lucknow, or were referred to the department for treatment between November 2005 and July 2007. Tuberculous meningitis was diagnosed in all patients on the basis of the clinical features of meningitis and a CSF study demonstrating lymphocytosis with raised protein levels. Collaborative evidence such as a history or the concomitant presence of tuberculosis affecting any other system of the body, results of polymerase chain reaction studies, evidence of basal exudates, tuberculomas, gyral enhancement on CT or MR images, and intraoperative findings of ependymal tubercles were occasionally available to support the diagnosis of TBM.

The staging of disease was based on the system developed by the British Medical Research Council. Stage I (early disease) is characterized by mainly nonspecific symptoms with some clinical signs of meningitis. There is no paresis, and the patient is fully conscious. In Stage II the patient shows signs of meningitis including neurological deficits. This stage is characterized by a clinical condition between that of Stage I and that of Stage III. In Stage III (advanced disease), the patient is extremely ill, with altered sensorium or is comatose, and there is gross paresis.

The diagnosis of hydrocephalus was based upon radiological evidence of enlarged ventricles associated with the clinical features of raised ICP. After confirmation of raised ICP, all patients included in this study underwent endoscopic ventricular exploration. Intraventricular pathology/obstruction was noted and treated and ETV was performed in all cases.

The Gaab Universal Endoscope (Karl Storz) was used (working sheath outer diameter, 6.5 mm; working channels, 1 mm and 2.7 mm; 0° and 30° telescopes of 2.7-mm and 4-mm diameter, respectively). Access was through a right coronal bur hole (except in 1 patient in whom a left coronal bur hole was made) under general anesthesia with endotracheal intubation. After entry of the endoscope into the lateral ventricle, CSF was collected and a diagnostic ventriculoscopic examination was performed in all patients to look for ependymal tubercles, septations, adhesions, and blockage at the Monro foramen. Once the third ventricle was entered, it was examined for tubercles, septations, adhesions, and aqueductal stenosis, and the status of the floor was assessed.

The mammillary bodies were then identified and ETV was performed by making a hole in the premammillary area using the tip of the bipolar electrosurgical probe (without the use of electrical current) or the tip of a 4 Fr Fogarty catheter. The stoma was then dilated to approximately 5 mm by balloon inflation of the Fogarty catheter. The endoscope was advanced further to look for any second membrane, which was then punctured if present. Septations, if present in the cistern, were broken, and the cistern was thoroughly irrigated with saline to clear it of the cisternal exudates and debris that are postulated to be the main cause of hydrocephalus in patients with TBM. To and fro movements of the margins of the stoma site with CSF flowing through it confirmed the patency of stoma.

Depending on the ventriculoscopic findings, septostomy, monorplasty, aqueductoplasty, and lesion biopsy were performed along with ETV.

Routinely, all patients underwent drainage of CSF (by lumbar puncture) for 3 consecutive days after surgery. Complications such as intraoperative bleeding, postoperative CSF leakage from the wound, infection, and ETV failure were specifically looked for and noted.

A cine phase-contrast MR image was obtained postoperatively to assess the stoma function. For qualitative assessment of CSF flow, midsagittal contrast images were displayed in closed-loop cine format. The direction of flow encoding was craniocaudal and the velocity of encoding was 4 cm/second (imaging parameters: TR 70 msec, TE 13 msec, flip angle 15°, field of view 250 mm, matrix 192 × 256, scan thickness 4 mm). We evaluated the presence of signal intensity void at the ventriculostomy site.

Assessment of the patients’ postoperative condition was based on neurological status as well as cine MR imaging. Neurological status was considered improved if by discharge the patient showed an improvement in the features of raised ICP.

Follow-Up Assessment

All patients were followed up by means of thorough clinical examination at 6 weeks, 2 months, and 6 months after endoscopic intervention. For purposes of qualitative assessment of stoma function, a cine phase-contrast MR imaging study was performed at the 2nd-month and 6th-month follow-up visits in all the patients in whom ETV had been successful. Results were evaluated in terms of clinical improvement, cine MR imaging findings, improvement in severity of hydrocephalus, and any other benefits of endoscopic intervention after 6 months of follow-up.

Statistical Analysis

Statistical evaluation was performed using commercially available software (SPSS System 15.0). The range, median, mean, and SD were calculated for the parameters to be compared. The Mann-Whitney U-test and Student t-test were used for comparison of the parameters. Probability values < 0.05 were considered significant.

Results

Demographic Pattern

Of the 26 patients included in this study, 19 (73.1%) were males and 7 (26.9%) were females (male/female ratio of 2.7:1). Their ages ranged from 7 months to 52 years (mean 18.19 years). Almost half of the patients (46.2%) were between 1 and 14 years old. Three patients (11.5%) had Stage I disease, 13 (50.0%) Stage II, and 10 (38.5%) Stage III.

Radiological Findings

Hydrocephalus was classified as communicating in 20 patients (76.9%) and noncommunicating in 6 (23.1%) (Table 1). Among the patients with noncommunicating hydrocephalus, the sites of obstruction were the Monro foramen in 3 and the aqueduct in 2; in the other patient,
Role of ETV in tuberculous meningitis hydrocephalus

obstruction was caused by a posterior fossa tuberculoma compressing the CSF pathways. Of the 26 patients, 13 had TBM hydrocephalus without any other associated radiological findings. Two patients had TBM hydrocephalus with a shunt (failed) in situ. Six patients had TBM hydrocephalus with tuberculomas. Another 3 patients had occlusion of the Monro foramen (unilateral in 2 and bilateral in 1), and 2 had aqueductal stenosis.

Endoscopic Intervention

Endoscopic third ventriculostomy was performed in all patients (Fig. 1). Additional procedures were performed along with ETV depending on the ventriculoscopic findings (Table 2); these procedures included aqueductoplasty in 2 patients, foraminoplasty and septostomy in 3 (unilateral in 2, bilateral in 1), and biopsy of the ependymal tubercles in 6. Fifteen patients underwent ETV as the sole procedure.

Clinical Improvement

The condition of 19 patients (73.1%) improved after the endoscopic procedure only, that of 5 (19.2%) improved after shunt placement in addition to the endoscopic procedure, and that of 2 patients (7.6%) did not improve even after shunt placement following endoscopic procedures (Table 2).

Of the 7 patients in whom ETV failed, 1 had obstruction at the level of the Monro foramen; postoperative cine MR imaging showed a recurrence of obstruction at the Monro foramen despite foraminoplasty and septostomy at the time of the ETV. The patient’s condition improved after placement of a VP shunt. This patient, who otherwise would have required a biventricular shunt, responded to placement of a single ventricular catheter, because she already had undergone a septostomy during the initial endoscopic procedure. The other 6 patients in whom ETV failed had communicating hydrocephalus and probably had predominantly an absorption defect. These 6 patients underwent VP shunt placement; 2 of the 6 did not show any improvement despite radiological resolution of hydrocephalus and both died of progressive TBM during the hospital stay. The remaining 4 patients showed satisfactory clinical improvement following shunt placement (Fig. 2).

TABLE 1: Radiological findings in 26 patients with TBM hydrocephalus

<table>
<thead>
<tr>
<th>Finding</th>
<th>Communicating (20 patients)</th>
<th>Noncommunicating (6 patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBM hydrocephalus only</td>
<td>13 (50.0)</td>
<td>0</td>
</tr>
<tr>
<td>TBM hydrocephalus w/ shunt in situ</td>
<td>2 (7.69)</td>
<td>0</td>
</tr>
<tr>
<td>TBM hydrocephalus w/ aqueductal stenosis</td>
<td>0</td>
<td>2 (7.69)</td>
</tr>
<tr>
<td>TBM hydrocephalus w/ Monro foramen obstruction</td>
<td>0</td>
<td>3 (11.54)</td>
</tr>
<tr>
<td>TBM hydrocephalus w/ tuberculomas</td>
<td>5 (19.23)</td>
<td>1 (3.85)</td>
</tr>
</tbody>
</table>

* Values represent numbers of patients (%).

TABLE 2: Summary of endoscopic interventions and clinical outcomes

<table>
<thead>
<tr>
<th>Interventions & Outcomes</th>
<th>No. of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>endoscopic intervention</td>
<td></td>
</tr>
<tr>
<td>ETV only</td>
<td>15 (57.7)</td>
</tr>
<tr>
<td>ETV w/ biopsy</td>
<td>6 (23.1)</td>
</tr>
<tr>
<td>ETV w/ foraminoplasty & septostomy</td>
<td>3 (11.5)</td>
</tr>
<tr>
<td>ETV w/ aqueductoplasty</td>
<td>2 (7.7)</td>
</tr>
<tr>
<td>outcome</td>
<td></td>
</tr>
<tr>
<td>improvement after endoscopic Tx only</td>
<td>19 (73.1)</td>
</tr>
<tr>
<td>improvement after endoscopic Tx & shunt</td>
<td>5 (19.2)</td>
</tr>
<tr>
<td>no improvement despite endoscopic Tx & shunt</td>
<td>2 (7.7)</td>
</tr>
</tbody>
</table>

Fig. 1. Endoscopic view of the third ventricle floor showing tubercles over the premammillary area.
in all (100%) the cases of Stage I disease and 84.6% of the cases of Stage II disease, but only succeeded in 50% of the cases of Stage III disease (Table 5).

Relationship Between Duration of Preoperative ATT and Endoscopic Outcome. The median preoperative duration of ATT was 30 days in cases in which endoscopic treatment was successful and 1 day in cases in which it failed (Table 4).

Relationship Between Cisternal Basal Exudates and Endoscopic Outcome. Cisternal basal exudates were observed intraoperatively in all of the cases in which endoscopic treatment failed and in only 15.7% of the cases in which it was successful (Table 5).

Endoscopic treatment was successful in 100% of the patients in whom cisternal basal exudates were not observed; in contrast, it was unsuccessful in 70% of those in whom they were observed intraoperatively.

Discussion

Role of ETV in Patients With TBM Hydrocephalus

Tuberculous meningitis is now becoming an increasingly important illness due to its association with diseases like HIV, as well as due to population migration.22

Placement of a VP shunt has been the mainstay of treatment in patients with TBM hydrocephalus. Shunts, however, are associated with lifelong problems, and shunt blockage is very common in TBM hydrocephalus due to the high cellularity and protein content of the patients’ CSF.10,12,18 The presence of a shunt may alter CSF dynamics in the brain. Patients may also lose the ability to absorb CSF through the subarachnoid space, primarily due to the long period of dependency on the alternative drainage route provided by the shunt.10,22

It has been shown in various studies that communicating hydrocephalus is the most common type of hydrocephalus found in patients with TBM, and the usual cause of hydrocephalus in these patients is exudative obstruction at the tentorial hiatus.13 Obstruction at the level of the

TABLE 3: Relationship between clinical outcome and cine MR imaging findings

<table>
<thead>
<tr>
<th>Finding</th>
<th>Improvement</th>
<th>No Improvement</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>flow void present</td>
<td>18 (90.0)</td>
<td>2 (10.0)</td>
<td>20</td>
</tr>
<tr>
<td>flow void absent</td>
<td>1 (16.7)</td>
<td>5 (83.3)</td>
<td>6</td>
</tr>
<tr>
<td>total no. of patients</td>
<td>19</td>
<td>7</td>
<td>26</td>
</tr>
</tbody>
</table>

* Values represent numbers of patients (%).
Role of ETV in tuberculous meningitis hydrocephalus

Monro foramen, aqueduct, or fourth ventricle may lead to noncommunicating hydrocephalus. The development of TBM hydrocephalus is a diffuse pathological process, with a combination of factors contributing to the clinical condition. Recent work on CSF dynamics has shown possible explanations for the success of ETV in communicating hydrocephalus.

Endoscopic third ventriculostomy is thought to resolve intracranial hypertension and restore CSF dynamics to an almost normal state. An ETV enables CSF to permeate the previously inaccessible and possibly normal CSF absorption areas within the brain. It may allow the CSF to circulate through and clean the exudates from areas of the brain with previously impaired absorption.

An ETV may also decrease the transventricular pressure gradient and the demyelination of periventricular brain parenchyma, which could contribute to some symptoms of hydrocephalus. Resolution of exudates as a result of treatment is an accepted fact, and we believe that ETV and postoperative CSF drainage improve intracranial hemodynamics and allow better drug delivery.

In our study we achieved successful CSF diversion by means of endoscopic treatment alone in 19 (73.1%) of 26 cases. This success rate is similar to the rate of 77% reported by Singh et al. Figaji et al. have also recommended ETV as the first surgical option in patients with communicating hydrocephalus associated with TBM.

Endoscopic treatment offers the advantage of allowing the surgeon to perform other procedures, such as septostomy, foraminoplasty, biopsy, and aqueductoplasty, to treat related pathological conditions while performing a ventriculostomy.

Role of Cine MR Imaging in Functional Assessment of the Stoma

It has been our experience, and it has also been documented in the literature, that symptoms of hydrocephalus may take time to resolve after ETV. Many times this leads to the false assumption that the stoma is not functioning. In such situations it becomes essential for the surgeon to accurately assess the functioning of the stoma, as its blockage might lead to neurological deterioration. Postoperative CT or conventional MR imaging studies are not very helpful because a decrease in the size of the ventricles is not evident on radiological images for some time after ETV.

Cine phase-contrast MR imaging has been increasingly used during the last decade for noninvasive evaluation of cranial and spinal CSF flow. The results of these measurements have yielded considerable information on the physiology of the normal CSF circulation. With the increasing frequency of neuroendoscopic procedures, cine MR imaging has been recommended for evaluating the patency of third ventriculostomies.

Cine MR imaging studies show flow void signal intensity in the floor of the third ventricle in most patients with clinical improvement, providing evidence of flow through the ETV.

The presence of flow void on cine MR imaging showed a sensitivity of 94.73% and a specificity of 71.42% in our study.

The positive predictive value was calculated to be 90% and the negative predictive value 83.33%.

The patency of ETV sites, however, has been demonstrated, even in cases deemed clinical failures, with an incidence of such cases reported to be as high as 50% in some series. In our study, false positives were seen in only 10% of the cases. A true positive rate as high as 83% has been documented in the literature. In our series the true positive rate was 90%.

Most of the studies carried out to date for assessment of stoma function by using cine MR imaging have been mainly in patients with noncommunicating hydrocephalus. Our study was performed keeping in mind the emerging role of ETV in cases of TBM hydrocephalus and the need for a postoperative imaging modality to assess the functioning of the stoma. Cine MR imaging is a time-honored imaging modality for assessment of CSF flow, and now its benefits can be extended to the functional assessment of third ventriculostomies in patients with TBM hydrocephalus.

Relationship of Duration of Illness With Endoscopic Outcome

Hydrocephalus may develop in patients with TBM during the acute stage of the illness, when symptoms and signs of meningitis predominate, or in the later phases, when the features of meningitis are responding or have

Table 4: Relationship of preoperative duration of illness and ATT with success of endoscopic treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Successful</th>
<th>Unsuccessful</th>
<th>Mann-Whitney U-Test</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of patients duration of illness (mos)</td>
<td>19</td>
<td>7</td>
<td>27.00</td>
<td>0.02</td>
</tr>
<tr>
<td>median range</td>
<td>4–1.5</td>
<td>1–11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>median duration of preop ATT (days)</td>
<td>30</td>
<td>1</td>
<td>40.50</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 5: Relationship of stage at presentation and presence or absence of cisternal basal exudates to success of endoscopic treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Successful</th>
<th>Unsuccessful</th>
<th>Total</th>
<th>χ²</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of patients stage at presentation</td>
<td>19</td>
<td>7</td>
<td>26</td>
<td>4.69</td>
<td>0.09</td>
</tr>
<tr>
<td>I</td>
<td>3 (100)</td>
<td>0 (0)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>11 (84.6)</td>
<td>2 (15.4)</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>5 (50.0)</td>
<td>5 (50.0)</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cisternal basal exudates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>present at op</td>
<td>3 (30)</td>
<td>7 (70)</td>
<td>10</td>
<td>15.33</td>
<td>0.000</td>
</tr>
<tr>
<td>absent at op</td>
<td>16 (100)</td>
<td>0</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
resolved.22 We found a statistically significant relationship (Mann-Whitney U-test = 27.00, \(p = 0.02 \)) between duration of illness and the outcome of endoscopic treatment, suggesting a better outcome in patients presenting to us in the later phases of the illness.

It has been shown in earlier studies that patients who presented with a history of longer duration of illness have a better prognosis in post-TBM hydrocephalus, as compared with those who presented with a history of short duration of illness.15,18,21,22

Relationship Between Stage of Disease at Presentation and Endoscopic Outcome

The stage of the disease when the patient is admitted for treatment is said to have a strong correlation with outcome. Both morbidity and mortality are described as higher in the higher stages.15,18,21,22

In our study, too, we found that the success rate for endoscopic treatment was best (100\%) in patients with Stage I disease, followed by 84.6 and 50\% in patients with Stage II and Stage III disease, respectively.

Although these observations appear to be clinically significant they were not statistically significant (\(\chi^2 = 4.7, p = 0.09 \)).

Relationship Between Duration of Preoperative ATT and Endoscopic Outcome

Hydrocephalus associated with TBM is a dynamic pathological process, and the condition may improve continuously as a result of ATT and timely use of steroids.14,15,18 Resolution of exudates as a result of treatment is an accepted fact, and we believe that the surgical procedure (ETV) and postoperative CSF drainage improves intracranial hemodynamics and allows better drug delivery.13–15

In our study, we found that the relationship of median duration of preoperative ATT with a successful endoscopic outcome was found to be clinically significant although it was statistically insignificant (Mann-Whitney U-test = 40.50, \(p = 0.13 \)).

Probably the resolution of these basal exudates following the commencement of ATT could be a reason that the endoscopic outcome was better in patients who were treated with ATT for a longer period preoperatively.

Relationship Between Cisternal Basal Exudates and Endoscopic Outcome

The gelatinous exudates that accumulate in the basal cisterns become organized, causing fibrous obliteration of the subarachnoid spaces and leading to the development of hydrocephalus. The exudates are prominently seen in the interpeduncular and prepontine cisterns. They are also common around the tentorial hiatus, giving rise to a picture of communicating hydrocephalus.18,19,22 Even though we used CT evidence of thick or severe basal exudates as an exclusion criterion, we encountered such exudates in 10 of our patients.

In our study, the relationship of the presence of intraoperative basal exudates with a successful endoscopic outcome was found to be statistically significant (\(\chi^2 = 15.3, p = 0.000 \)).

During ETV, after performing the ventriculostomy, we irrigate the cisterns with normal saline, which helps in clearing off the basal exudates and debris from the cisterns. This would help in maintaining the patency of the stoma. Postoperative intermittent CSF drainage by lumbar puncture was instituted in all our patients for 3 days, because it helps in removing exudative debris and maintaining the patency of the stoma.

Conclusions

Endoscopic third ventriculostomy should be considered as the first surgical option in all patients with TBM hydrocephalus who require CSF diversion surgery. It offers the added advantage of allowing the surgeon to perform other procedures such as septostomy, foraminoplasty, biopsy, and aqueductoplasty to treat related conditions.

Cine MR imaging is an effective noninvasive tool that can be used for the functional assessment of third ventriculostomy in patients with post-TBM hydrocephalus, with the efficacy being maintained during follow-up.

Although we recommend ETV as the initial surgical option in all patients with post-TBM hydrocephalus requiring CSF diversion, there are some factors that can be used in clinical practice to predict the outcome of the procedure: longer history of duration of disease, lower stage of disease, longer preoperative duration of ATT, and absence of cisternal exudates.

At the same time, all these factors (duration of illness, stage of illness, duration of preoperative ATT, and intraoperative observation of cisternal exudates), although discussed individually, could be interrelated to jointly affect the outcome of ETV in patients with post-TBM hydrocephalus.

Disclaimer

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

References

Role of ETV in tuberculous meningitis hydrocephalus

Address correspondence to: Ashish Purshottam Chugh, M.Ch., Department of Neurosurgery, Chhatrapati Shahuji Maharaj Medical University, Lucknow, Uttar Pradesh, India. email: apchugh@yahoo.com.