Hydrocephalus presenting as idiopathic aqueductal stenosis with subsequent development of obstructive tumor: report of 2 cases demonstrating the importance of serial imaging

Jarod L. Roland, MD; Richard L. Price, MD, PhD; Ashwin A. Kamath, MD; S. Hassan Akbari, MD; Eric C. Leuthardt, MD; Brandon A. Miller, MD, PhD; and Matthew D. Smyth, MD

Departments of Neurological Surgery, Neuroscience, Biomedical Engineering, and Mechanical Engineering and Materials Science; Center for Innovation in Neuroscience and Technology; and Brain Laser Center, Washington University School of Medicine in St. Louis, Missouri

The authors describe 2 cases of triventricular hydrocephalus initially presenting as aqueductal stenosis that subsequently developed tumors of the pineal and tectal region. The first case resembled late-onset idiopathic aqueductal stenosis on serial imaging. Subsequent imaging revealed a new tumor in the pineal region causing mass effect on the midbrain. The second case presented in a more typical pattern of aqueductal stenosis during infancy. On delayed follow-up imaging, an enlarging tectal mass was discovered. In both cases hydrocephalus was successfully treated by cerebrospinal fluid diversion prior to tumor presentation. The differential diagnoses, diagnostic testing, and treatment course for these unusual cases are discussed. The importance of follow-up MRI in cases of idiopathic aqueductal stenosis is emphasized by these exemplar cases.

https://thejns.org/doi/abs/10.3171/2017.5.PEDS1779

KEY WORDS hydrocephalus; aqueductal stenosis; pineal region; germ cell tumor; tectal glioma
Case Reports
Case 1
History and Examination
This 8-year-old boy, with a medical history significant for obesity and sinusitis, presented with an acute neurological decline over the course of 1 day. He had been in his usual state of health until the morning of presentation, when he complained of new-onset headache, nausea, and an episode of emesis.

His mental status declined and he was orotracheally intubated for airway protection at an outside hospital. Non-contrast head CT revealed triventricular hydrocephalus (Fig. 1A and B). Pineal region calcification was noted on CT, which is not uncommon in this age group, and was not thought to be causal to his obstructive hydrocephalus. The child was transferred to St. Louis Children’s Hospital (SLCH) for further evaluation and treatment.

On arrival to SLCH, the patient was obtunded. MRI without and with contrast, including cine phase-contrast CSF flow studies, was performed (Fig. 1C and D). No enhancing abnormality was identified, the tectal region did not appear expanded, the cerebral aqueduct was patent, and no signs of tumor or mass effect were apparent. Specifically, the area of calcification noted on CT did not correlate with mass or gadolinium enhancement on MRI. MRI CSF flow studies revealed obstruction of flow at the cerebral aqueduct.

Initial Operation
We proceeded with ETV and external ventricular drain (EVD) placement. There were no complications. No abnormalities in the ventricular system were noted during endoscopy. We obtained intraoperative CSF samples for routine infectious studies, which returned within normal limits, and Gram staining and culture revealed no growth. Postoperatively, he recovered well and was discharged to home in good condition after EVD wean. His only deficit was short-term memory difficulty.

Follow-Up
The patient returned for routine follow-up 1 week after discharge in good condition with memory improvement. Repeat MRI 4 months after presentation showed no signs of tectal or pineal region mass. His ventriculomegaly had resolved. Clinically, he had no signs or symptoms of hydrocephalus or intracranial lesion.

He was briefly lost to follow-up until 20 months post-presentation when he returned with recurrence of headaches, nausea, and a new complaint of imbalance. MRI without and with contrast revealed a new heterogeneously enhancing lesion in the pineal region, measuring approximately 2.5 cm in diameter, with signal characteristics of calcification and adipose tissue elements (Fig. 2A and B). We performed a lumbar puncture for CSF studies including alpha-fetoprotein (AFP), beta-human chorionic gonadotropin (β-hCG), and carcinoembryonic antigen (CEA), which were all within normal limits. Cytological examination did not identify any signs of malignancy.

Tumor Treatment
We then performed a stereotactic needle biopsy via a right parietal transcortical approach. The biopsy pathology was consistent with mature teratoma. Due to the patient’s obesity and the deep-seated tumor location, we attempted treatment with laser interstitial thermal therapy (LITT). Follow-up imaging revealed tumor progression. Therefore, we proceeded with an occipital craniotomy and transcallosal approach for gross-total resection. The patient tolerated the procedure well without complication and was discharged home on postoperative Day 4. The final pathological diagnosis from open resection was mixed germ cell tumor.

MRI performed 1 day and 3 months postoperatively confirmed gross-total resection (Fig. 2C and D). Mass effect causing compression of the aqueduct was relieved, and the aqueduct again appeared patent on structural imaging. The patient’s ventricle size remained within normal limits, stable since his initial CSF diversion with ETV. Given the aggressive pathology, he was treated with carboplatin and etoposide chemotherapy. He has done well, having completed chemotherapy 7 months after the most recent surgical intervention (2.75 years after first presenting with triventricular hydrocephalus).

Case 2
History and Examination
This female infant presented at 2 months of age with findings of enlarging orbitofrontal circumference and up-gaze palsy on routine clinical examination. She was born at full term via cesarean section, which was performed for failure of labor progression. The remainder of her perinatal course was unremarkable. The results of routine labo-
Hydrocephalus presenting as aqueductal stenosis

J Neurosurg Pediatr Volume 20 • October 2017

Laboratory studies were all within normal limits. The physical examination was notable for findings of a full anterior fontanel and up-gaze palsy.

Noncontrast head CT revealed triventricular ventriculomegaly consistent with obstructive hydrocephalus (Fig. 3A and B). High-resolution structural MRI revealed no signs of tumor or other mass lesion (Fig. 3C and D). The cerebral aqueduct appeared to taper at the rostral extent with a normal-sized fourth ventricle (Fig. 3D). Given the patient’s clinical presentation and imaging findings we diagnosed aqueductal stenosis.

Initial Operation

A right occipital VP shunt was placed without complication, and postoperative CT showed reduction in ventricle size. Three months later, she returned to the clinic with vomiting. Head CT demonstrated an interval increase in ventricle size. The patient returned to the operating room for ETV and ligation of the distal VP shunt catheter. No abnormalities were noted in the ventricular system on endoscopy. She tolerated the procedure well and was discharged home in good condition. She returned on an elective basis 1 month later for VP shunt removal.

The patient returned to the clinic 7 months after shunt removal with complaints of headache and emesis. A head CT scan again demonstrated enlarged ventricles, suggesting ETV failure. A new right occipital VP shunt was placed without complication. In the following years, she had intermittent complaints of headache without nausea or vomiting, which were evaluated by CT and never required shunt revision. However, when she was 11 years old, MRI was performed for evaluation of headache and revealed a tectum-based lesion expanding into the quadrigeminal cistern and compressing the cerebral aqueduct. She did not have ventriculomegaly due to CSF diversion via the VP shunt.

Tumor Treatment

We performed a supracerebellar infratentorial approach to the lesion. We did not alter her VP shunt, and she tolerated the procedure well without complication. She was discharged home on postoperative Day 4. The final pathological diagnosis was WHO Grade I pilocytic astrocytoma.

Follow-Up

Postoperative imaging confirmed gross-total resection (Fig. 4C and D) and relief of mass effect on the aqueduct. The patient’s ventricle size continues to remain small. Given the low-grade histopathology of her tumor she did not require adjuvant treatment. She continues to do well at 6 months postresection (11.5 years after initial presentation).

Discussion

Aqueductal stenosis is characterized by obstruction of CSF flow through the cerebral aqueduct in the absence of a mass lesion. The obstruction of outflow from the third to the fourth ventricle results in triventricular dilation involving the lateral and third ventricles, while sparing the fourth ventricle. Arachnoid webs, strictures, or other glial...
Late-onset idiopathic aqueductal stenosis (LIAS) is a rare entity but has been well described in the literature. Early descriptions of this clinical entity predate CT and therefore relied on ventriculography for diagnosis. Retrospect suggests that some such cases may have been misdiagnosed tumors due to inadequate imaging available at the time. More recent literature provides a modern interpretation and largely identifies LIAS as an initial treatment option. The first case described in this paper initially appeared consistent with LIAS. However, a careful review of the literature provides clues to help distinguish this clinical entity.

Several case series suggest chronicity of onset to be more common in LIAS. Although, acute onset of neurological symptoms attributable to LIAS has previously been reported. Therefore, to distinguish cases of LIAS from those of congenital or tumor-related etiology, Fuku-hara and Luciano proposed the following criteria: 1) no intracerebral lesions except hydrocephalus; 2) enlarged lateral and third ventricles with a comparatively small fourth ventricle; 3) no apparent history of intracerebral bleeding or meningitis; 4) no prior surgical treatment for hydrocephalus; and 5) undiagnosed in infancy. In a subsequent study, Locatelli et al. applied similar criteria and emphasized the clinical presentation and radiographic interpretation in the diagnosis of LIAS. Unfortunately, their only patient with an acute presentation was lost to follow-up at 3 months after ETV.

In our first case, the timeline of presentation was the main finding not consistent with LIAS. Additionally, new-onset obstructive hydrocephalus in adolescence is more commonly related to neoplasia than to aqueductal stenosis. Therefore, emphasis for diagnosis should be placed on clinical presentation in addition to radiographic evaluation when considering the diagnosis of adolescent-onset aqueductal stenosis.

Only 1 other report in the literature describes 2 similar pediatric patients who presented with idiopathic obstructive hydrocephalus and were only later found to have a pineal tumor on follow-up MRI. The authors’ recommendations were for repeated MRI with contrast in all cases of new-onset hydrocephalus without a clear etiology.

Conclusions

These cases illustrate triventricular hydrocephalus without tumor on initial MRI and re-presentation in delayed fashion with a new mass lesion causing aqueductal compression. The first case appeared consistent with LIAS, with the exception of an acute time course, which is atypical. The second case presented in a more typical pattern of idiopathic aqueductal stenosis during infancy. Both patients were subsequently found to have tumors that caused occlusion of the cerebral aqueduct. Interestingly, both had successful CSF diversion that prevented devel-
opment of symptomatic hydrocephalus. This may have delayed the tumor diagnosis until compressive symptoms were apparent.

Aqueductal stenosis is typically a benign disease that responds well to CSF diversion. However, it is prudent to perform delayed high-resolution MRI to confirm the diagnosis of idiopathic aqueductal stenosis and rule out occult slow-growing neoplasia.

Acknowledgments

Dr. Roland received support from the NINDS grant number R25NS090978-01.

References


Disclosures

Dr. Leuthardt reports a consultant relationship with Monteris.

Author Contributions

Conception and design: Roland, Leuthardt, Miller, Smyth. Acquisition of data: Roland, Price. Analysis and interpretation of data: all authors. Drafting the article: Roland, Price, Miller, Smyth. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Roland. Administrative/technical/material support: Smyth. Study supervision: Smyth.

Correspondence

Jarod L. Roland, Department of Neurological Surgery, Washington University School of Medicine in St. Louis, Campus Box 8057, 660 South Euclid Ave., St. Louis, MO 63110. email: rolanj@wustl.edu.

Hydrocephalus presenting as aqueductal stenosis

J Neurosurg Pediatr Volume 20 • October 2017

333