Role of resection and adjuvant therapy in long-term disease outcomes for low-grade pediatric intramedullary spinal cord tumors

Raheel Ahmed, MD, PhD; Arnold H. Menezes, MD; and James C. Torner, PhD

1Division of Neurosurgery, The Hospital for Sick Children, Toronto, Canada; and Departments of 2Neurosurgery and 3Epidemiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa

OBJECTIVE Surgical excision is the mainstay treatment for resectable low-grade intramedullary spinal cord tumors (IMSCSTs) in the pediatric age group. Chemotherapy and radiation treatments are generally reserved for progressive or recurrent disease. Given the indolent nature of low-grade tumors and the potential side effects of these approaches, their long-term treatment benefits are unclear. The aim of the study was to determine long-term disease outcomes and the therapeutic roles of surgery and adjuvant therapies in pediatric patients with low-grade IMSCSTs over an extended follow-up period.

METHODS Case records for all pediatric patients (< 21 years of age) with a histopathological diagnosis of low-grade IMSCST were selected over a period from January 1975 to January 2010. Outcome variables including McCormick functional grade, overall survival (OS), and progression-free survival (PFS) were analyzed with respect to demographic and treatment variables.

RESULTS Case records of 37 patients with low-grade IMSCSTs were identified, with a mean follow-up duration of 12.3 ± 1.4 years (range 0.5–37.2 years). Low-grade astrocytomas were the most prevalent histological subtype (n = 22, 59%). Gross-total resection (GTR) was achieved in 38% of patients (n = 14). Fusion surgery was required in 62% of patients with pre- or postoperative deformity (10 of 16). On presentation, functional improvement was observed in 87% and 46% of patients in McCormick Grades I and II, respectively, and in 100%, 100%, and 75% in Grades III, IV, and V, respectively. Kaplan-Meier PFS rates were 63% at 5 years, 57% at 10 years, and 44% at 20 years. OS rates were 92% at 5 years, 80% at 10 years, and 65% at 20 years. On multivariate analysis, shunt placement (hazard ratio [HR] 0.33, p = 0.01) correlated with disease progression. There was a trend toward improved 5-year PFS in patients who received adjuvant chemotherapy and radiation therapy (RT; 55%) compared with those who did not (36%). Patients who underwent subtotal resection (STR) were most likely to undergo adjuvant therapy (HR 7.86, p = 0.02).

CONCLUSIONS This extended follow-up duration in patients with low-grade IMSCSTs beyond the first decade indicates favorable long-term OS up to 65% at 20 years. GTR improved PFS and was well tolerated with sustained functional improvement in the majority of patients. Adjuvant chemotherapy and RT improved PFS in patients who underwent STR. These results emphasize the role of resection as the primary treatment approach, with adjuvant therapy reserved for patients at risk for disease progression and those with residual tumor burden.

http://thejns.org/doi/abs/10.3171/2016.5.PEDS15356

KEY WORDS intramedullary spinal cord tumor; gross-total resection; low-grade tumor; disease-free survival; spine; oncology

The majority of intramedullary spinal cord tumors (IMSCSTs) in the pediatric age group are low-grade gliomas, comprising low-grade astrocytomas and ependymomas. The mainstay treatment consists of resection, with extent of resection shown to be directly correlated with disease outcomes. Gross-total resection (GTR), although feasible with the advent of neurophysiological monitoring and microsurgical techniques, is associated with a risk of neurological decline. Disease outcomes in pediatric patients, therefore, need to be assessed over a long-term follow-up period, in light of the neurological disability, risk for secondary spinal defor-
mity, and natural history of slow-growing low-grade tumors. Hence, it is important to weigh the surgical benefits of GTR for disease control relative to quality of life and functional outcome measures over long-term follow-up.

Chemotherapy and radiation therapy (RT) are often used for the management of both high- and low-grade tumors with progressive disease. In contrast, the treatment indications of adjuvant chemotherapy and RT are less clear for low-grade gliomas following subtotal resection (STR), given the inherent benign natural history of the tumor.

We undertook a retrospective analysis of clinical outcomes in pediatric patients with low-grade IMSCTs, focusing on clinical factors that correlate with disease outcomes. In contrast to earlier studies, our extended clinical follow-up beyond the first decade allows long-term assessment of disease outcomes. We also determined clinical factors that aid in decision-making for adjuvant chemotherapy and RT.

Methods

Pediatric patients (< 21 years of age) with a histopathological diagnosis of low-grade (Grade I or II) IMSCT were identified from the neurosurgery database at the University of Iowa Hospitals and Clinics, over a study period extending from January 1975 to January 2010. Patient records were systematically reviewed for: 1) demographics, 2) clinical presentation, 3) surgical treatment, 4) chemotherapy and/or RT received, and 5) final clinical outcomes. Pre- and postoperative clinical and radiographic evaluation were undertaken in a multidisciplinary manner by Pediatric Neurosurgery, Orthopedics, Medical Oncology, and Radiation Oncology services. Baseline and follow-up clinical and radiographic assessment of skeletal deformity, and determination and timing of skeletal fusion when needed, was undertaken in consultation with the Pediatric Orthopedics service. The senior author (A.H.M.) was the primary surgeon for the majority of patients. Computed tomography myelograms were used for radiographic diagnosis for the earlier part of the study until the time that MRI was routinely used. Pre- and postoperative functional assessment was undertaken through the modified McCormick functional scale, as previously described. The deficit score on presentation was calculated through the presence (score = 1) or absence (score = 0) of motor, sensory, bladder, or bowel deficits. The University of Iowa Human Subjects Office Institutional Review Board approved this retrospective study.

Operative Technique

Operative techniques for pediatric IMSCTs at our institution have been described in detail previously. Briefly, an osteoplastic laminoplasty was planned in all children unless preoperative imaging studies indicated significant mass effect that necessitated extensive decompression. A laminectomy was performed with the aid of a fascial graft in instances when preoperative imaging studies indicated a high probability of incomplete resection, given a lack of clearly defined tumor margins. Neurophysiological monitoring with somatosensory evoked potentials was used in the last 3 decades; motor-evoked potentials were adjuncts used in the last decade. A midline myelotomy spanned tumor segments. The initial biopsies were obtained from the most enhancing areas on preoperative MRI. Tumor dissection was aided by high-powered microscopy and a microsurgical technique with suction, ultrasonic aspiration, and cottonoid patty wisps soaked with thrombin. Bipolar cautery was infrequently needed. Circumferential dissection was then extended in all planes where a distinct tumor–spinal cord interface could be identified. Careful monitoring of the mean arterial pressure is critical (above 70 mm Hg), with vasopressor support as needed. Infiltrative tumors underwent significant debulking of the grossly enhancing areas, and in these situations a duraplasty was performed. In all other cases, a primary dural closure was accomplished and laminae/spinous processes were replaced. In our opinion, a laminoplasty is advantageous in aiding future instrumentation if needed, improving wound healing, and preventing CSF leak.

The degree of resection was determined through intraoperative assessment of tumor removal, additionally verified through immediate (1–3 day) postoperative MRI. Tumor resection was classified as GTR if the surgeon’s and radiologist’s assessments were in agreement. In all other cases, an STR was determined to have occurred.

Statistical Analysis

Univariate analysis for all outcomes analysis was performed using the Pearson chi-square test and logistic regression. Progression-free survival (PFS) and overall survival (OS) were estimated using Kaplan-Meier analysis. Multivariate analysis of survival was performed using logistic regression for dichotomous end points and survival regression using the underlying Weibull distribution for time to event analysis. Goodness of fit was assessed by survival graphs, log-survival plots, and Schoenfeld residual plots to assess proportionality. Univariate statistical associations were first calculated, and variables with p values < 0.1 were then entered into a survival regression model for multivariate analysis. The proportional hazards assumption was verified. Input variables that had p values < 0.05 after this analysis were reported as statistically significant on multivariate analysis. All statistical analysis was performed using SAS software (version 9.3, SAS Inc.). Statistical significance for both univariate and multivariate analysis was set at p < 0.05.

Results

A total of 37 patients were identified with low-grade IMSCTs who received their primary or secondary treatment at the University of Iowa during the study period. Baseline demographics are summarized in Table 1. The average interval from symptom development to clinical presentation was 8.1 months (range 0.1–60 months). Sensory neurological deficits were most common (n = 29, 78%) on presentation, followed by motor deficits (n = 20, 54%). The cervicomedullary region was most commonly involved (n = 13, 35%). Low-grade astrocytomas were the most prevalent histological subtype (n = 22, 59%).

Long-term outcomes of low-grade pediatric IMSCTs
Surgical Treatment and Outcomes

The majority of patients underwent a single resection procedure during the study period (n = 25, 68%; Table 2). A spinal laminectomy was undertaken in 73% of patients (n = 27). GTR was achieved in 38% of the patients (n = 14). GTR rates were 18.2% for astrocytomas, 87.5% for ependymomas, and 42.9% for gangliogliomas. To determine predictors for the extent of resection, various clinical factors at presentation were evaluated. On univariate analysis, age at presentation (< 6 years, 6–16 years, > 14 years; p = 0.02) and tumor subtype (p = 0.002) were found to be significantly associated with the extent of resection on univariate analysis. These variables were not significant on multivariate analysis.

Neurological Outcomes

The mean follow-up duration was 12.3 ± 1.4 years (range 0.5–37.2 years). Comparison of functional status between initial presentation and last clinical follow-up evaluation using McCormick functional grades indicated that 87% of patients (13/15) who presented with Grade I...
status experienced neurological improvement. Of patients who presented with Grade II status (n = 13), 46% (6/13) experienced improvement in their functional state. The rates of functional improvement were 100% (3/3) for Grade III, 100% (2/2) for Grade IV, and 75% (3/4) for Grade V patients.

In all, 15 (75%) of the 20 patients who presented with motor deficits experienced neurological improvement by the last follow-up evaluation. Similarly, 72% of patients (21/29) with sensory deficits on presentation showed neurological improvement. The rates for improvement in bladder and bowel deficits were 17% (2/12) and 50% (3/6), respectively.

The incidence of spinal deformity on presentation was 11% (n = 4). Postoperative deformity was present in 32% (n = 12) of patients at a mean interval of 1.1 ± 0.6 years. Fusion surgery was required in 62% of patients with deformity (10/16). The mean interval until fusion surgery was 4.3 ± 0.9 years (range 0.7–10 years). More than 1 fusion procedure was required in 30% of patients (3/10) while the remainder of the patients underwent a single fusion procedure.

Long-Term Disease Outcomes

In all, 43% (n = 16) of patients experienced disease recurrence or progression at a mean interval of 4.3 ± 1.4 years from their initial treatment. PFS was determined to be 63% (95% CI 45%–77%) at 5 years, 57% (95% CI 38%–71%) at 10 years, and 44% (95% CI 24%–63%) at 20 years (Table 2, Fig. 1). OS was 92% (95% CI 77%–97%) at 5 years, 80% (95% CI 59%–91%) at 10 years, and 65% (95% CI 37%–82%) at 20 years (Table 2, Fig. 1).

Disease outcomes were also stratified by extent of resection. For patients with GTR (n = 14, 38%), PFS was 92% (95% CI 54%–99%) at 5 years and 10 years, and 68% (95% CI 16%–92%) at 20 years. OS was 100% (95% CI 0) at 5 years, 10 years, and 20 years (Fig. 2). For the remainder of patients who underwent STR (n = 23, 62%), PFS was 45% (95% CI 24%–64%) at 5 years, 34% (95% CI 15%–55%) at 10 years, and 27% (95% CI 10%–48%) at 20 years. OS was 87% (95% CI 64%–95%) at 5 years, 66% (95% CI 37%–83%) at 10 years, and 38% (95% CI 27%–78%) at 20 years (Fig. 2).

To determine predictors for OS, clinical and treatment factors were correlated with survival status (alive vs deceased). On univariate analysis, functional status on presentation, extent of resection, shunt placement, use of adjuvant therapy, indication for RT, mode of disease progression management, and number of tumor surgeries were found to correlate significantly with survival status. Shunt placement was the most significant factor on univariate analysis (HR = 0.331, p = 0.0128). On multivariate analysis, none of these variables were independently associated with OS.

Using the same input variables, predictors for disease progression were similarly determined. Resection, shunt placement, use of adjuvant therapy, indication for RT, mode of disease progression management, and number of tumor surgeries correlated with disease progression on univariate analysis. On multivariate analysis, shunt placement (HR 0.33, p = 0.01) correlated with disease progression.

Discussion

The indolent nature of low-grade pediatric IMSCTs necessitates that assessment of treatment outcomes must take into account the need for extended clinical follow-up. Our long-term follow-up duration, extending beyond the first decade, indicates favorable outcomes with OS up to 80% and PFS up to 57% at 10 years in pediatric patients with low-grade IMSCTs. Resection was well tolerated with sustained functional improvement observed in the majority of patients. The inclusion of adjuvant chemotherapy and RT for patients following an STR was associated with a trend in PFS. In addition, the extent of resection was identified retrospectively as a significant treatment criterion for adjuvant therapy. Previous reports have either pooled all histological subtypes or both adult and pediatric patients together. Our report focuses on long-term outcomes in
low-grade IMSCTs and retrospectively analyzes clinical factors that aid in decision-making in the use of adjuvant chemotherapy and RT.

Role of Resection

The most common subtypes of low-grade gliomas in the pediatric age group are Grades I and II astrocytomas and low-grade ependymomas. 27,45 GTR rates of up to 75% have been reported for IMSCTs in pediatric patients.7 Lower rates of GTR have been reported in series with a higher proportion of astrocytomas that are typically associated with infiltrative borders.45 Our results indicate that tumor subtype is strongly associated with extent of resection, with higher rates of GTR in ependymomas (87.5%) as compared with astrocytomas (18.2%), consistent with findings from earlier reports.21,24

GTR is recognized as the primary treatment of choice for these tumors.12,13,42 In pediatric patients with low-grade gliomas, GTR is associated with significantly prolonged PFS3,45,51 and OS.38 Yet, additional studies have reported limited benefits of GTR. The extent of resection was not found to correlate with OS within a multicenter consortium of French hospitals, with survival rates of 66% at 5 years and 60% at 10 years within this group.4 Despite varying results reported on the role of surgery, consensus evidence suggests a beneficial role of GTR in spinal low-grade gliomas in pediatric patients.17

The ideal treatment goal of radical tumor resection must also be balanced by the potential for long-term neurological morbidity in pediatric patients. Tumor location, preoperative neurological status, and the presence of spinal deformity can further impact long-term functional and neurological outcomes following GTR of IMSCTs.16,44 Similar considerations for the morbidity of GTR in intracranial gliomas have been highlighted by reports of permanent neurological deficits in as many as 18% of pediatric patients following GTR of low-grade cerebellar astrocytomas.6

In our study group, the overall rate of GTR was 38%. This rate is consistent with the preponderance of astrocytomas (59%) in our group, that typically present with diffuse borders (70%) and hence indistinct surgical planes of resection. Given the indolent nature of low-grade IMSCTs, our results focused on assessment of long-term disease outcomes. On extended clinical follow-up, GTR was significantly associated with improved PFS and OS. There is a clear discordance in OS and PFS rates between patients who undergo GTR and STR, respectively (Fig. 2). PFS was approximately 34% at 10 years in patients who underwent STR as compared with approximately 92% at 10 years in those who underwent GTR. OS was associated with GTR on univariate analysis (p = 0.01) but did not reach statistical significance on multivariate analysis, probably due to sample size limitation. Hence, our results emphasize the important role of GTR in improving long-term disease outcomes. This is concordant with clinical data on intracranial low-grade gliomas in the pediatric age group that indicate that disease outcome measures are most significantly affected by the extent of resection.47 This finding also highlights a key difference in the natural history of intramedullary low-grade gliomas in contrast to the intracranial low-grade gliomas that are associated with relatively better/prolonged PFS rates of 45%–56% following STR at 8 years.53

Our results indicate that surgery is well tolerated in the pediatric age group, and up to approximately 75% of patients experienced significant improvement in their preoperative motor and sensory deficits. The majority of patients (87%) who presented in McCormick Grade I showed functional improvement, with up to 75%–100% of patients in Grades IV and V also experiencing functional improvement by at least 1 functional grade. In all, 27% (10/37) of patients required a fusion surgery for associated spinal deformity that was within the reported range of secondary deformity in IMSCTs.8,48,55,56 Hence, our long-term (more than 1 decade) assessment of disease outcomes indicates significantly improved OS and PFS following GTR as compared with STR. Concurrent assessment of McCormick functional grades indicates that GTR was well tolerated with improvement and/or preservation of baseline functional status over an extended follow-up period.

Role of Adjuvant Chemotherapy

Consensus guidelines on the postoperative management use of adjuvant treatments including RT and chemotherapy are lacking, given the relatively rare incidence of these tumors and the heterogeneity within patients with
respect to age, histology, grade, degree of resection, and tumor location. Chemotherapy treatment regimens have been proposed with the therapeutic rationale of improving disease outcomes following partial resection or disease progression, to avert long-term disease progression and delay the use of RT in newly diagnosed gliomas. Polychemotherapy enabled an OS rate of 87.5% over a median follow up of 4.8 years, with 4 patients (50%) in continuous remission without the use of any RT (study group, n = 8). Chemotherapy has also been effective in enabling partial response or stable disease in patients with leptomeningeal disease at onset, a subset that is typically associated with poor outcomes. Hence, the inclusion of chemotherapy after incomplete resection may delay or avoid the use of RT.

Chemotherapy is generally well tolerated in the majority of patients, with minimal toxicity. Hence, a conservative resection combined with adjuvant therapy has also been recommended for intramedullary low-grade astrocytomas. In addition, the therapeutic efficacy of chemotherapy has been reported to be comparable to radiotherapy regimens.

Role of Adjuvant RT

Adjuvant therapy is associated with improved survival following STR for IMSCTs. Adjuvant radiotherapy following resection significantly improved PFS in a pooled sample population of patients with ependymoma. PFS was significantly improved in patients who underwent STR followed by adjuvant RT as compared with those who underwent GTR only. Disease survival up to 59% at 5 years and 43%–52% at 10 years has been reported for patients with astrocytomas treated with adjuvant radiotherapy (median dose 50 Gy) following biopsy or STR. In-field failure with local tumor recurrence is the most common form of disease recurrence in patients who received postoperative RT. Local failure rates for ependymomas following postoperative adjuvant RT range from 6% to 11%. Similarly, for low-grade astrocytomas, local failure rates range from 22% to 56%.

Other studies have reported conflicting treatment experiences with adjuvant RT. Within a multicenter patient cohort, the inclusion of RT was not found to benefit OS for patients who underwent GTR or STR. The inclusion of postoperative management of low-grade pediatric IMSCTs surgically unresectable tumors that show disease progression was more than 4 years in our series, underscoring the need for long-term follow-up and surveillance imaging in postoperative management of pediatric patients with low-grade IMSCTs.

Treatment Indications of Chemotherapy and RT

The treatment rationales for chemotherapy and RT are more clearly defined for high-grade IMSCTs and for patients with low-grade tumors with typically diffuse and surgically unresectable tumors that show disease progression. In contrast, the treatment indications for chemotherapy and RT are less well defined for patients with low-grade tumors following an STR, when expectant management by clinical observation must be weighed against the treatment option of chemotherapy and RT for adjuvant indications or for treatment of disease recurrence at a later time point.

Given PFS rates following STR of 45% and 34% at 5 years and 10 years, respectively, it is important to identify clinical parameters that can predict at-risk subgroups that would benefit from adjuvant therapies. In our study, we therefore focused on identifying clinical factors that aid in decision-making for inclusion of chemotherapy and RT following an STR. Our results indicate that the inclusion of adjuvant chemotherapy and RT was more likely in patients with residual tumor burden following STR. Thus, patients with extensive IMSCTs that were partially resected were more likely to receive chemotherapy or RT. This clinical factor will aid in treatment decisions for adjuvant therapy following STR. The mean interval until disease progression was more than 4 years in our series, underscoring the need for long-term follow-up and surveillance imaging in postoperative management of pediatric patients with low-grade IMSCTs.

Conclusions

Our results indicate that on extended long-term follow-up, surgical management of low-grade pediatric IMSCTs is associated with favorable neurological and disease outcome measures. GTR enables improvement in OS and PFS. The addition of adjuvant chemotherapy and RT following STR is associated with an improved trend in PFS. Residual tumor disease following STR is most significantly associated with use of adjuvant chemotherapy and RT.

References

7. Constantini S, Miller DC, Allen JC, Rorke LB, Freed D, Epstein FJ: Radical excision of intramedullary spinal cord


46. Schultheiss TE, Kun LE, Ang KK, Stephens LC: Radiation

Disclosures
The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions
Conception and design: Menezes, Ahmed. Acquisition of data: Ahmed. Analysis and interpretation of data: all authors. Drafting the article: Menezes, Ahmed. Critically revising the article: all authors. Reviewed submitted version of manuscript: all authors. Approved the final version of the manuscript on behalf of all authors: Menezes. Statistical analysis: Ahmed, Torner. Study supervision: Menezes.

Supplemental Information
Previous Presentations
Portions of this work were presented as a poster at the AANS Annual Meeting in 2013.

Correspondence
Arnold H. Menezes, Department of Neurosurgery, University of Iowa Hospitals and Clinics, 200 Hawkins Dr., 1824 JPP, Iowa City, IA 52242. email: arnold-menezes@uiowa.edu.