Utility of Pipeline embolization device for emergency recanalization of a dissecting carotid tonsillar loop: illustrative cases

Yosuke Akamatsu, MD, PhD,1,2 Santiago Gomez-Paz, MD,1 Justin M. Moore, MD, PhD,1 Christopher S. Ogilvy, MD,1 and Ajith J. Thomas, MD1

1Neurosurgical Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and 2Department of Neurosurgery, Iwate Medical University, Yahaba, Japan

BACKGROUND Cervical arterial tortuosity is not uncommon in patients with spontaneous carotid artery dissections (CADs), but the tortuosity often precludes endovascular stent reconstruction. The authors report 2 cases of emergency recanalization of a carotid tonsillar loop dissection using a Pipeline embolization device (PED).

OBSERVATIONS Two patients presented with symptomatic CAD involving tonsillar looping of the cervical internal carotid artery (ICA). Although the tonsillar loop prevented navigation of the carotid and peripheral stent delivery system, a PED was easily navigated and successfully deployed, resulting in successful recanalization of a looped ICA.

LESSONS Emergency recanalization of a cervical CAD using a PED is a feasible alternative for treating a cervical CAD associated with tonsillar loops.

Illustrative Cases

Case 1
A 55-year-old man with a history of hypertension presented with acute-onset dysarthria, right hemiparesis, and an initial National Institutes of Health Stroke Scale (NIHSS) score of 10. He was transferred to our hospital about 5 hours after the onset of symptoms. Upon transfer, his NIHSS had declined to 17 with total aphasia. Computed tomography (CT) angiography showed left ICA occlusion. Because he was symptomatic, urgent angiography was performed. The left common carotid artery (CCA) injection demonstrated tapered occlusion of the cervical ICA (Fig. 1A). A 6-Fr long sheath was advanced into the left CCA, and a triaxial system, including a microwire, microcatheter, and intermediate catheter, was navigated through the stenotic segment. A diagnostic angiogram obtained immediately after this procedure demonstrated improved antegrade flow in the ICA, suggesting arterial dissection in a tortuous segment (Fig. 1B). Intravenous heparin was given to achieve an activating clot time of 250 seconds, and the patient was loaded with 15 mg of integrilin.

ABBREVIATIONS CAD = carotid artery dissection; CCA = common carotid artery; CT = computed tomography; ICA = internal carotid artery; NIHSS = National Institutes of Health Stroke Scale; PED = Pipeline embolization device.
just before placement of a PED. We were unable to navigate a distal embolic protection device (Spider FX, Covidien) beyond the dissected loop. Several stent delivery systems, including a renal artery stent (Express SD Renal/Biliary Monorail, Boston Scientific) and peripheral artery stent (Zilver 518 Vascular Self-Expanding Stent, Cook Medical) were unable to traverse the loop. Therefore, the decision was made to attempt a PED placement. A PED-compatible microcatheter was advanced into the petrous ICA over a microwire, and a 5 x 16-mm PED was easily navigated distal to the tortuous artery and successfully deployed to cover the dissected cervical ICA loop, resulting in favorable anterograde flow (Fig. 1C and D). The patient was discharged to a rehabilitation facility on aspirin and ticagrelor with a maintenance dose on postoperative day 4. At the 3-month follow-up, the patient had no neurological deficit and a digital subtraction angiography obtained 3 months later revealed patency of the dissecting segment with minimal filling of the pseudolumen (Fig. 1E).

Case 2

A 54-year-old man presented with 2 hours of acute right-sided weakness with an NIHSS score of 8. He denied any history of trauma or
cervical pain. CT angiogram demonstrated a right ICA occlusion. After receiving intravenous tissue plasminogen activator, the patient was transferred to our hospital for further workup. An angiogram and a right CCA injection revealed occlusion of the proximal ICA (Fig. 2A). A 6-Fr long sheath was advanced into the proximal ICA after systemic heparinization. Next, a microcatheter was advanced over a wire through the guide catheter into the distal intracranial ICA through the tonsillar loop of the cervical ICA, and angiography through the microcatheter demonstrated filling of the distal internal ICA and middle cerebral artery (Fig. 2B). To open the proximal ICA, a 6 × 30-mm stent was deployed (Fig. 2C). Thrombectomy was performed at the distal ICA, demonstrating flow restriction distal to the stenoocclusive segment with a pseudolumen at the tonsillar looped ICA (Fig. 2D). A PED was placed, demonstrating distal filling without flow restriction (Fig. 2E).
carotid stent (Protégé, Medtronic) was advanced over the exchange-length wire and deployed, resulting in opacification of the ICA proximally without distal filling (Fig. 2C). Thereafter, using the triaxial technique, an aspiration catheter (JET 7, Penumbra) was advanced over a microcatheter and exchange-length microwire through the occluded segment. While maintaining microwire access, the aspiration catheter was connected to suction and withdrawn. Diagnostic angiogram demonstrated partial recanalization and restricted flow distal to the dissecting segment in the descending portion of the hairpin loop (Fig. 2D). Considering the difficulty of deploying a carotid or peripheral stent through the looped segment, we decided to place a PED to open the vessel. The former triaxial system was again advanced to the distal ICA, and a 5 × 20-mm PED was successfully deployed to cover the dissecting lesion. Final angiography was performed, which demonstrated patency of the dissected segment with a small aneurysm (Fig. 2E). The patient was discharged home on aspirin and clopidogrel, with a maintenance dose on postoperative day 6, with a modified Rankin Scale score of 1.

Discussion

Observations

We present two cases of emergency recanalization of a carotid tonsillar loop dissection using a PED. Although exact indications remain debatable, emergency endovascular stent reconstruction of the cervical CAD with a symptomatic patient should be performed to prevent progression to an ischemic infarct. Although most of the cervical CADs can be treated using a standard carotid stent system, this strategy would be challenging in lesions with a tortuous artery because a stiff and inflexible stent delivery system may not be able to traverse the tortuous segment.

However, as independent studies have demonstrated, redundancy itself is associated with spontaneous cervical carotid dissection and is considered to be a surrogate marker for a subclinical connective tissue disorder. Therefore, stent recanalization techniques have clinical implications because the dissection often occurs in a loop or tortuous segment. In the cases described here, we experienced difficulties in advancing the stent delivery systems through the looped segments due to their inflexibility, although the microwire or microcatheter was easily navigated.

In the past, carotid loop dissections were successfully treated using a low-profile intracranial stent, such as Enterprise (Codman Neurovascular) and Neuroform (Target/BSC/Smart Therapeutics), because the stent delivery system and the stent itself are flexible. However, because their low pore density and radial force may cause thrombus migration from the pseudolumen into the stents and insufficient opening of the stenocullosive segment, these devices may not be appropriate for carotid dissection. In contrast, Zussman et al. demonstrated the efficiency of telescoping-stent reconstruction of the carotid tonsillar loop dissection using Zilver self-expanding peripheral stents. However, in one of the present cases (case 1), this stent delivery system could not progress through the looped segment, whereas the PED delivery system was easily navigated through the lesion. Therefore, because of their flexible design that facilitates greater accessibility, protection of thrombus prolapse, and higher radial force, PEDs were felt to enable the device to conform better to the vessel curve than other stents, especially in the looped and thrombosed lesion.

We also should note that PEDs are designed to open about 0.25 mm beyond their nominal diameter, and the largest diameter would be around 5.25 mm. In the present cases, we could deploy PEDs at the lesion segment because the diameter of the carotid artery was smaller than the maximal nominal diameter of the PED. When the lumen diameter is greater than 5.25 mm, a SURPASS flow diverter (Stryker Neurovascular) may be better to prevent stent migration or shortening.

Lessons

Our case demonstrates the utility of PEDs for emergency recanalization of cervical CAD associated with significant tortuosity.

References

6. Rahal JP, Gao B, Safain MG, et al. Stent recanalization of carotid tonsillar loop dissection using the Enterprise vascular reconstruc-

Disclosures

Dr. Ajith Thomas serves on the Data Safety and Monitoring Board of the SCENT flow diverter trial with funds paid to the institution.

Author Contributions

Conception and design: Thomas, Akamatsu, Moore, Ogilvy. Acquisition of data: Akamatsu, Moore, Ogilvy. Analysis and interpretation of data: Thomas, Ogilvy. Drafting the article: all authors. Critically revising the article: all authors. Reviewed submitted version of manuscript: Thomas, Akamatsu, Gomez-Paz, Ogilvy. Approved the final version of the manuscript on behalf of all authors: Thomas. Administrative/technical/material support: Moore. Study supervision: Ogilvy.

Correspondence

Ajith J. Thomas: Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA. athomas6@bidmc.harvard.edu.