Rhoton

You are looking at 1 - 10 of 47 items

Restricted access

Daniel Dutra Cavalcanti, Bárbara Albuquerque Morais, Eberval Gadelha Figueiredo, Robert F. Spetzler and Mark C. Preul

OBJECTIVE

The brainstem is a compact, delicate structure. The surgeon must have good anatomical knowledge of the safe entry points to safely resect intrinsic lesions. Lesions located at the lateral midbrain surface are better approached through the lateral mesencephalic sulcus (LMS). The goal of this study was to compare the surgical exposure to the LMS provided by the subtemporal (ST) approach and the paramedian and extreme-lateral variants of the supracerebellar infratentorial (SCIT) approach.

METHODS

These 3 approaches were used in 10 cadaveric heads. The authors performed measurements of predetermined points by using a neuronavigation system. Areas of microsurgical exposure and angles of the approaches were determined. Statistical analysis was performed to identify significant differences in the respective exposures.

RESULTS

The surgical exposure was similar for the different approaches—369.8 ± 70.1 mm2 for the ST; 341.2 ± 71.2 mm2 for the SCIT paramedian variant; and 312.0 ± 79.3 mm2 for the SCIT extreme-lateral variant (p = 0.13). However, the vertical angular exposure was 16.3° ± 3.6° for the ST, 19.4° ± 3.4° for the SCIT paramedian variant, and 25.1° ± 3.3° for the SCIT extreme-lateral variant craniotomy (p < 0.001). The horizontal angular exposure was 45.2° ± 6.3° for the ST, 35.6° ± 2.9° for the SCIT paramedian variant, and 45.5° ± 6.6° for the SCIT extreme-lateral variant opening, presenting no difference between the ST and extreme-lateral variant (p = 0.92), but both were superior to the paramedian variant (p < 0.001). Data are expressed as the mean ± SD.

CONCLUSIONS

The extreme-lateral SCIT approach had the smaller area of surgical exposure; however, these differences were not statistically significant. The extreme-lateral SCIT approach presented a wider vertical and horizontal angle to the LMS compared to the other craniotomies. Also, it provides a 90° trajectory to the sulcus that facilitates the intraoperative microsurgical technique.

Restricted access

Spyridon Komaitis, Georgios P. Skandalakis, Aristotelis V. Kalyvas, Evangelos Drosos, Evgenia Lani, John Emelifeonwu, Faidon Liakos, Maria Piagkou, Theodosis Kalamatianos, George Stranjalis and Christos Koutsarnakis

OBJECTIVE

The aim of this study was to investigate the anatomical consistency, morphology, axonal connectivity, and correlative topography of the dorsal component of the superior longitudinal fasciculus (SLF-I) since the current literature is limited and ambiguous.

METHODS

Fifteen normal, adult, formalin-fixed cerebral hemispheres were studied through a medial to lateral fiber microdissection technique. In 5 specimens, the authors performed stepwise focused dissections of the lateral cerebral aspect to delineate the correlative anatomy between the SLF-I and the other two SLF subcomponents, namely the SLF-II and SLF-III.

RESULTS

The SLF-I was readily identified as a distinct fiber tract running within the cingulate or paracingulate gyrus and connecting the anterior cingulate cortex, the medial aspect of the superior frontal gyrus, the pre–supplementary motor area (pre-SMA), the SMA proper, the paracentral lobule, and the precuneus. With regard to the morphology of the SLF-I, two discrete segments were consistently recorded: an anterior and a posterior segment. A clear cleavage plane could be developed between the SLF-I and the cingulum, thus proving their structural integrity. Interestingly, no anatomical connection was revealed between the SLF-I and the SLF-II/SLF-III complex.

CONCLUSIONS

Study results provide novel and robust anatomical evidence on the topography, morphology, and subcortical architecture of the SLF-I. This fiber tract was consistently recorded as a distinct anatomical entity of the medial cerebral aspect, participating in the axonal connectivity of high-order paralimbic areas.

Restricted access

Spyridon Komaitis, Georgios P. Skandalakis, Aristotelis V. Kalyvas, Evangelos Drosos, Evgenia Lani, John Emelifeonwu, Faidon Liakos, Maria Piagkou, Theodosis Kalamatianos, George Stranjalis and Christos Koutsarnakis

OBJECTIVE

The aim of this study was to investigate the anatomical consistency, morphology, axonal connectivity, and correlative topography of the dorsal component of the superior longitudinal fasciculus (SLF-I) since the current literature is limited and ambiguous.

METHODS

Fifteen normal, adult, formalin-fixed cerebral hemispheres were studied through a medial to lateral fiber microdissection technique. In 5 specimens, the authors performed stepwise focused dissections of the lateral cerebral aspect to delineate the correlative anatomy between the SLF-I and the other two SLF subcomponents, namely the SLF-II and SLF-III.

RESULTS

The SLF-I was readily identified as a distinct fiber tract running within the cingulate or paracingulate gyrus and connecting the anterior cingulate cortex, the medial aspect of the superior frontal gyrus, the pre–supplementary motor area (pre-SMA), the SMA proper, the paracentral lobule, and the precuneus. With regard to the morphology of the SLF-I, two discrete segments were consistently recorded: an anterior and a posterior segment. A clear cleavage plane could be developed between the SLF-I and the cingulum, thus proving their structural integrity. Interestingly, no anatomical connection was revealed between the SLF-I and the SLF-II/SLF-III complex.

CONCLUSIONS

Study results provide novel and robust anatomical evidence on the topography, morphology, and subcortical architecture of the SLF-I. This fiber tract was consistently recorded as a distinct anatomical entity of the medial cerebral aspect, participating in the axonal connectivity of high-order paralimbic areas.

Restricted access

Pieter Nachtergaele, Ahmed Radwan, Stijn Swinnen, Thomas Decramer, Mats Uytterhoeven, Stefan Sunaert, Johannes van Loon and Tom Theys

OBJECTIVE

Connections between the insular cortex and the amygdaloid complex have been demonstrated using various techniques. Although functionally well connected, the precise anatomical substrate through which the amygdaloid complex and the insula are wired remains unknown. In 1960, Klingler briefly described the “fasciculus amygdaloinsularis,” a white matter tract connecting the posterior insula with the amygdala. The existence of such a fasciculus seems likely but has not been firmly established, and the reported literature does not include a thorough description and documentation of its anatomy. In this fiber dissection study the authors sought to elucidate the pathway connecting the insular cortex and the mesial temporal lobe.

METHODS

Fourteen brain specimens obtained at routine autopsy were dissected according to Klingler’s fiber dissection technique. After fixation and freezing, anatomical dissections were performed in a stepwise progressive fashion.

RESULTS

The insula is connected with the opercula of the frontal, parietal, and temporal lobes through the extreme capsule, which represents a network of short association fibers. At the limen insulae, white matter fibers from the extreme capsule converge and loop around the uncinate fasciculus toward the temporal pole and the mesial temporal lobe, including the amygdaloid complex.

CONCLUSIONS

The insula and the mesial temporal lobe are directly connected through white matter fibers in the extreme capsule, resulting in the appearance of a single amygdaloinsular fasciculus. This apparent fasciculus is part of the broader network of short association fibers of the extreme capsule, which connects the entire insular cortex with the temporal pole and the amygdaloid complex. The authors propose the term “temporoinsular projection system” (TIPS) for this complex.

Restricted access

Ali Tayebi Meybodi, Leandro Borba Moreira, Michael T. Lawton, Jennifer M. Eschbacher, Evgenii G. Belykh, Michelle M. Felicella and Mark C. Preul

OBJECTIVE

In the current neurosurgical and anatomical literature, the intracanalicular segment of the ophthalmic artery (OphA) is usually described to be within the optic nerve dural sheath (ONDS), implying direct contact between the nerve and the artery inside the optic canal. In the present study, the authors sought to clarify the exact relationship between the OphA and ONDS.

METHODS

Ten cadaveric heads were subjected to endoscopic endonasal and transcranial exposures of the OphA in the optic canal (5 for each approach). The relationship between the OphA and ONDS was assessed. Histological examination of one specimen of the optic nerve and the accompanying OphA was also performed to confirm the relationship with the ONDS.

RESULTS

In all specimens, the OphA coursed between the two layers of the dura (endosteal and meningeal) and was not in direct contact with the optic nerve, except for the first few millimeters of the proximal optic canal before it pierced the ONDS. Upon reaching the orbit, the two layers of the dura separated and allowed the OphA to literally float within the orbital fat. The meningeal dura continued as the ONDS, whereas the endosteal dura became the periorbita.

CONCLUSIONS

This study clarifies the interdural course of the OphA within the optic canal. This anatomical nuance has important neurosurgical implications regarding safe exposure and manipulation of the OphA.

Restricted access

Ali Tayebi Meybodi, Leandro Borba Moreira, Andrew S. Little, Michael T. Lawton and Mark C. Preul

OBJECTIVE

Endoscopic endonasal approaches (EEAs) are increasingly being incorporated into the neurosurgeon’s armamentarium for treatment of various pathologies, including paraclinoid aneurysms. However, few anatomical assessments have been performed on the use of EEA for this purpose. The aim of the present study was to provide a comprehensive anatomical assessment of the EEA for the treatment of paraclinoid aneurysms.

METHODS

Five cadaveric heads underwent an endonasal transplanum-transtuberculum approach to expose the paraclinoid area. The feasibility of obtaining proximal and distal internal carotid artery (ICA) control as well as the topographic location of the origin of the ophthalmic artery (OphA) relative to dural landmarks were assessed. Limitations of the EEA in exposing the supraclinoid ICA were also recorded to identify favorable paraclinoid ICA aneurysm projections for EEA.

RESULTS

The extracavernous paraclival and clinoidal ICAs were favorable segments for establishing proximal control. Clipping the extracavernous ICA risked injury to the trigeminal and abducens nerves, whereas clipping the clinoidal segment put the oculomotor nerve at risk. The OphA origin was found within 4 mm of the medial opticocarotid point on a line connecting the midtubercular recess point to the medial vertex of the lateral opticocarotid recess. An average 7.2-mm length of the supraclinoid ICA could be safely clipped for distal control. Assessments showed that small superiorly or medially projecting aneurysms were favorable candidates for clipping via EEA.

CONCLUSIONS

When used for paraclinoid aneurysms, the EEA carries certain risks to adjacent neurovascular structures during proximal control, dural opening, and distal control. While some authors have promoted this approach as feasible, this work demonstrates that it has significant limitations and may only be appropriate in highly selected cases that are not amenable to coiling or clipping. Further clinical experience with this approach helps to delineate its risks and benefits.

Restricted access

Wei-Hsin Wang, Stefan Lieber, Roger Neves Mathias, Xicai Sun, Paul A. Gardner, Carl H. Snyderman, Eric W. Wang and Juan C. Fernandez-Miranda

OBJECTIVE

The foramen lacerum is a relevant skull base structure that has been neglected for many years. From the endoscopic endonasal perspective, the foramen lacerum is a key structure due to its location at the crossroad between the sagittal and coronal planes. The objective of this study was to provide a detailed investigation of the surgical anatomy of the foramen lacerum and its adjacent structures based on anatomical dissections and imaging studies, propose several relevant key surgical landmarks, and demonstrate the surgical technique for its full exposure with several illustrative cases.

METHODS

Ten colored silicone-injected anatomical specimens were dissected using a transpterygoid approach to the foramen lacerum region in a stepwise manner. Five similar specimens were used for a comparative transcranial approach. The osseous anatomy was examined in 32 high-resolution multislice CT studies and 1 disarticulated skull. Representative cases were selected to illustrate the application of the findings.

RESULTS

The pterygosphenoidal fissure is the synchondrosis between the lacerum process of the pterygoid bone and the floor of the sphenoid bone. It constantly converges with the posterior end of the vidian canal at a 45° angle, and its posterolateral end points directly to the lacerum foramen. The pterygoid tubercle separates the vidian canal from the pterygosphenoidal fissure, and forms the anterior wall of the lower part of the foramen lacerum. The lingual process, which forms the lateral wall of the foramen lacerum, was identified in 53 of 64 sides and featured an average height of 5 mm. The mandibular strut separates the foramen lacerum from the foramen ovale and had an average width of 5 mm.

CONCLUSIONS

This study provides relevant surgical landmarks and a systematic approach to the foramen lacerum by defining anterior, medial, lateral, and inferior walls that may facilitate its safe exposure for effective removal of lesions while minimizing the risk of injury to the internal carotid artery.

Restricted access

Maria Peris-Celda, Avital Perry, Lucas P. Carlstrom, Christopher S. Graffeo, Colin L. W. Driscoll and Michael J. Link

OBJECTIVE

Middle fossa surgery is challenging, and reliable surgical landmarks are essential to perform accurate and safe surgery. Although many descriptions of the middle fossa components have been published, a clinically practical description of this very complex anatomical region is lacking. Small structure arrangements in this area are often not well visualized or accurately demarcated with neuronavigation systems. The objective is to describe a “roadmap” of key surgical reference points and landmarks during middle fossa surgery to help the surgeon predict where critical structures will be located.

METHODS

The authors studied 40 dry skulls (80 sides) obtained from the anatomical board at their institution. Measurements of anatomical structures in the middle fossa were made with a digital caliper and a protractor, taking as reference the middle point of the external auditory canal (MEAC). The results were statistically analyzed.

RESULTS

The petrous part of the temporal bone was found at a mean of 16 mm anterior and 24 mm posterior to the MEAC. In 87% and 99% of the sides, the foramen ovale and foramen spinosum, respectively, were encountered deep to the zygomatic root. The posterior aspect of the greater superficial petrosal nerve (GSPN) groove was a mean of 6 mm anterior and 25 mm medial to the MEAC, nearly parallel to the petrous ridge. The main axis of the IAC projected to the root of the zygoma in all cases. The internal auditory canal (IAC) porus was found 5.5 mm lateral and 4.5 mm deep to the lateral aspect of the trigeminal impression along the petrous ridge (mean measurement values). A projection from this point to the middle aspect of the root of the zygoma, being posterior to the GSPN groove, could estimate the orientation of the IAC.

CONCLUSIONS

In middle fossa approaches, the external acoustic canal is a reliable reference before skin incision, whereas the zygomatic root becomes important after the skin incision. Deep structures can be related to these 2 anatomical structures. An easy method to predict the location of the IAC in surgery is described. Careful study of the preoperative imaging is essential to adapt this knowledge to the individual anatomy of the patient.

Full access

Ariel Kaen, Eugenio Cárdenas Ruiz-Valdepeñas, Alberto Di Somma, Francisco Esteban, Javier Márquez Rivas and Jesús Ambrosiani Fernandez

OBJECTIVE

The endoscopic endonasal transpterygoid route has been widely evaluated in cadavers, and it is currently used during surgery for specific diseases involving the lateral skull base. Identification of the petrous segment of the internal carotid artery (ICA) is a key step during this approach, and the vidian nerve (VN) has been described as a principal landmark for safe endonasal localization of the petrous ICA at the level of the foramen lacerum. However, the relationship of the VN to the ICA at this level is complex as well as variable and has not been described in the pertinent literature. Accordingly, the authors undertook this purely anatomical study to detail and quantify the peri-lacerum anatomy as seen via an endoscopic endonasal transpterygoid pathway.

METHODS

Eight human anatomical specimens (16 sides) were dissected endonasally under direct endoscopic visualization. Anatomical landmarks of the VN and the posterior end of the vidian canal (VC) during the endoscopic endonasal transpterygoid approach were described, quantitative anatomical data were compiled, and a schematic classification of the most relevant structures encountered was proposed.

RESULTS

The endoscopic endonasal transpterygoid approach was used to describe the different anatomical structures surrounding the anterior genu of the petrous ICA. Five key anatomical structures were identified and described: the VN, the eustachian tube, the foramen lacerum, the petroclival fissure, and the pharyngobasilar fascia. These structures were specifically quantified and summarized in a schematic acronym—VELPPHA—to describe the area. The VELPPHA area is a dense fibrocartilaginous space around the inferior compartment of the foramen lacerum that can be reached by following the VC posteriorly; this area represents the posterior limits of the transpterygoid approach and, of utmost importance, no neurovascular structures were observed through the VELPPHA area in this study, indicating that it should be a safe zone for surgery in the posterior end of the endoscopic endonasal transpterygoid approach.

CONCLUSIONS

The VELPPHA area represents the posterior limits of the endoscopic endonasal transpterygoid approach. Early identification of this area can enhance the safety of the endoscopic endonasal transpterygoid approach expanded to the lateral aspect of the skull base, especially when treating patients with poorly pneumatized sphenoid sinuses.

Restricted access

Huy Q. Truong, Stefan Lieber, Edinson Najera, Joao T. Alves-Belo, Paul A. Gardner and Juan C. Fernandez-Miranda

OBJECTIVE

The medial wall of the cavernous sinus (CS) is often invaded by pituitary adenomas. Surgical mobilization and/or removal of the medial wall remains a challenge.

METHODS

Endoscopic endonasal dissection was performed in 20 human cadaver heads. The configuration of the medial wall, its relationship to the internal carotid artery (ICA), and the ligamentous connections in between them were investigated in 40 CSs.

RESULTS

The medial wall of the CS was confirmed to be an intact single layer of dura that is distinct from the capsule of the pituitary gland and the periosteal layer that forms the anterior wall of the CS. In 32.5% of hemispheres, the medial wall was indented by and/or well adhered to the cavernous ICA. The authors identified multiple ligamentous fibers that anchored the medial wall to other walls of the CS and/or to specific ICA segments. These parasellar ligaments were classified into 4 groups: 1) caroticoclinoid ligament, spanning from the medial wall and the middle clinoid toward the clinoid ICA segment and anterior clinoid process; 2) superior parasellar ligament, connecting the medial wall to the horizontal cavernous ICA and/or lateral wall of the CS; 3) inferior parasellar ligament, bridging the medial wall to the anterior wall of the CS or anterior surface of the short vertical segment of the cavernous ICA; and 4) posterior parasellar ligament, which anchors the medial wall to the short vertical segment of the cavernous ICA and/or the posterior carotid sulcus. The caroticoclinoid ligament and inferior parasellar ligament were present in most CSs (97.7% and 95%, respectively), while the superior and posterior parasellar ligaments were identified in approximately half of the CSs (57.5% and 45%, respectively). The caroticoclinoid ligament was the strongest and largest ligament, and it was typically assembled as a group of ligaments with a fan-like arrangement. The inferior parasellar ligament was the first to be encountered after opening the anterior wall of the CS during an interdural transcavernous approach.

CONCLUSIONS

The authors introduce a classification of the parasellar ligaments and their role in anchoring the medial wall of the CS. These ligaments should be identified and transected to safely mobilize the medial wall away from the cavernous ICA during a transcavernous approach and for safe and complete resection of adenomas that selectively invade the medial wall.