Rhoton

You are looking at 41 - 48 of 48 items

Full access

Jian Wang, Fumitaka Yoshioka, Wonil Joo, Noritaka Komune, Vicent Quilis-Quesada and Albert L. Rhoton Jr.

OBJECTIVE

The object of this study was to examine the relationships of the cochlea as a guide for avoiding both cochlear damage with loss of hearing in middle fossa approaches and injury to adjacent structures in approaches directed through the cochlea.

METHODS

Twenty adult cadaveric middle fossae were examined using magnifications of ×3 to ×40.

RESULTS

The cochlea sits below the floor of the middle fossa in the area between and below the labyrinthine segment of the facial nerve and greater petrosal nerve (GPN) and adjacent to the lateral genu of the petrous carotid. Approximately one-third of the cochlea extends below the medial edge of the labyrinthine segment of the facial nerve, geniculate ganglion, and proximal part of the GPN. The medial part of the basal and middle turns are the parts at greatest risk in drilling the floor of the middle fossa to expose the nerves in middle fossa approaches to the internal acoustic meatus and in anterior petrosectomy approaches. Resection of the cochlea is used selectively in extending approaches through the mastoid toward the lateral edge of the clivus and front of the brainstem.

CONCLUSIONS

An understanding of the location and relationships of the cochlea will reduce the likelihood of cochlear damage with hearing loss in approaches directed through the middle fossa and reduce the incidence of injury to adjacent structures in approaches directed through the cochlea.

Full access

Ali Tayebi Meybodi, Michael T. Lawton, Halima Tabani and Arnau Benet

OBJECTIVE

Surgical access to the lateral recess of the fourth ventricle (LR) is suboptimal with existing transvermian and telovelar approaches because of limited lateral exposure, significant retraction of the cerebellar tonsil, and steep trajectories near brainstem perforator arteries. The goal in this study was to assess surgical exposure of the tonsillobiventral fissure approach to the LR, and to describe the relevant anatomy.

METHODS

Two formaldehyde-fixed cerebella were used to study the anatomical relationships of the LR. Also, the tonsillobiventral fissure approach was simulated in 8 specimens through a lateral suboccipital craniotomy.

RESULTS

The pattern of the cerebellar folia and the cortical branches of the posterior inferior cerebellar artery were key landmarks to identifying the tonsillobiventral fissure. Splitting the tonsillobiventral fissure allowed a direct and safe surgical trajectory to the LR and into the cerebellopontine cistern. The proposed approach reduces cervical flexion and optimizes the surgical angle of attack.

CONCLUSIONS

The tonsillobiventral fissure approach is a feasible and effective option for exposing the LR. This approach has more favorable trajectories and positions for the patient and the surgeon, and it should be added to the armamentarium for lesions in this location.

Full access

Satoshi Matsuo, Serhat Baydin, Abuzer Güngör, Koichi Miki, Noritaka Komune, Ryota Kurogi, Koji Iihara and Albert L. Rhoton Jr.

OBJECTIVE

A common approach to lesions of the pineal region is along the midline below the torcula. However, reports of how shifting the approach off midline affects the surgical exposure and relationships between the tributaries of the vein of Galen are limited. The purpose of this study is to examine the microsurgical and endoscopic anatomy of the pineal region as seen through the supracerebellar infratentorial approaches, including midline, paramedian, lateral, and far-lateral routes.

METHODS

The quadrigeminal cisterns of 8 formalin-fixed adult cadaveric heads were dissected and examined with the aid of a surgical microscope and straight endoscope. Twenty CT angiograms were examined to measure the depth of the pineal gland, slope of the tentorial surface of the cerebellum, and angle of approach to the pineal gland in each approach.

RESULTS

The midline supracerebellar route is the shortest and provides direct exposure of the pineal gland, although the culmen and inferior and superior vermian tributaries of the vein of Galen frequently block this exposure. The off-midline routes provide a surgical exposure that, although slightly deeper, may reduce the need for venous sacrifice at both the level of the veins from the superior cerebellar surface entering the tentorial sinuses and at the level of the tributaries of the vein of Galen in the quadrigeminal cistern, and require less cerebellar retraction. Shifting from midline to off-midline exposure also provides a better view of the cerebellomesencephalic fissure, collicular plate, and trochlear nerve than the midline approaches. Endoscopic assistance may aid exposure of the pineal gland while preserving the bridging veins.

CONCLUSIONS

Understanding the characteristics of different infratentorial routes to the pineal gland will aid in gaining a better view of the pineal gland and cerebellomesencephalic fissure and may reduce the need for venous sacrifice at the level of the tentorial sinuses draining the upper cerebellar surface and the tributaries of the vein of Galen.

Full access

Noritaka Komune, Satoshi Matsuo, Koichi Miki and Albert L. Rhoton Jr.

OBJECTIVE

The application of the endoscope in the lateral skull base increases the importance of the middle ear cavity as the corridor to the skull base. The aim of this study was to define the middle ear as a route to the fundus (lateral end) of the internal acoustic canal and to propose feasible landmarks to the fundus.

METHODS

This was a cadaveric study; 34 adult cadaveric temporal bones and 2 dry bones were dissected with the aid of the endoscope and microscope to show the anatomy of the transcanal approach to the middle ear and fundus of the internal acoustic canal.

RESULTS

In the middle ear cavity, the cochleariform process is one of the key landmarks for accessing the fundus of the internal acoustic canal. The triangle formed by the anterior and posterior edges of the overhang of the round window and the cochleariform process provides a landmark to start drilling the bone to access the fundus of the internal acoustic canal.

CONCLUSIONS

The external acoustic canal and middle ear cavity combined, using endoscopic guidance, can provide a route to the fundus of the internal acoustic canal. A triangular landmark crossing the promontory has been described for reaching the meatal fundus. This transcanal approach requires an understanding of the relationship between the middle ear cavity and the fundus of the internal acoustic canal and provides a potential new area of cooperation between otology and neurosurgery for accessing pathology in this and the bordering skull base.

Full access

Eduardo Carvalhal Ribas, Kaan Yagmurlu, Hung Tzu Wen and Albert L. Rhoton Jr.

OBJECT

The purpose of this study was to describe the location of each white matter pathway in the area between the inferior limiting insular sulcus (ILS) and temporal horn that may be crossed in approaches through the temporal stem to the medial temporal lobe.

METHODS

The fiber tracts in 14 adult cadaveric cerebral hemispheres were examined using the Klingler technique. The fiber dissections were completed in a stepwise manner, identifying each white matter pathway in different planes and describing its position in relation to the anterior end of the ILS.

RESULTS

The short-association fibers from the extreme capsule, which continue toward the operculae, are the most superficial subcortical layer deep to the ILS. The external capsule fibers are found deeper at an intermediate layer and are formed by the uncinate fasciculus, inferior frontooccipital fasciculus, and claustrocortical fibers in a sequential anteroposterior disposition. The anterior commissure forms the next deeper layer, and the optic radiations in the sublenticular part of the internal capsule represent the deepest layer. The uncinate fasciculus is found deep to the anterior third of the ILS, whereas the inferior frontooccipital fasciculus and optic radiations are found superficial and deep, respectively, at the posterior two-thirds of this length.

CONCLUSIONS

The authors' findings suggest that in the transsylvian approach, a 6-mm incision beginning just posterior to the limen insula through the ILS will cross the uncinate fasciculus but not the inferior frontooccipital fasciculus or optic radiations, but that longer incisions carry a risk to language and visual functions.

Full access

Tomas Poblete, Xiaochun Jiang, Noritaka Komune, Ken Matsushima and Albert L. Rhoton Jr.

OBJECT

There continues to be confusion over how best to preserve the branches of the facial nerve to the frontalis muscle when elevating a frontotemporal (pterional) scalp flap. The object of this study was to examine the full course of the branches of the facial nerve that must be preserved to maintain innervation of the frontalis muscle during elevation of a frontotemporal scalp flap.

METHODS

Dissection was performed to follow the temporal branches of facial nerves along their course in 5 adult, cadaveric heads (n = 10 extracranial facial nerves).

RESULTS

Preserving the nerves to the frontalis muscle requires an understanding of the course of the nerves in 3 areas. The first area is on the outer surface of the temporalis muscle lateral to the superior temporal line (STL) where the interfascial or subfascial approaches are applied, the second is in the area medial to the STL where subpericranial dissection is needed, and the third is along the STL. Preserving the nerves crossing the STL requires an understanding of the complex fascial relationships at this line. It is important to preserve the nerves crossing the lateral and medial parts of the exposure, and the continuity of the nerves as they pass across the STL. Prior descriptions have focused largely on the area superficial to the temporalis muscle lateral to the STL.

CONCLUSIONS

Using the interfascial-subpericranial flap and the subfascial-subpericranial flap avoids opening the layer of loose areolar tissue between the temporal fascia and galea in the area lateral to the STL and between the galea and frontal pericranium in the area medial to the STL. It also preserves the continuity of the nerve crossing the STL. This technique allows for the preservation of the nerves to the frontalis muscle along their entire trajectory, from the uppermost part of the parotid gland to the frontalis muscle.

Full access

Thomas Frigeri, Eliseu Paglioli, Evandro de Oliveira and Albert L. Rhoton Jr.

OBJECT

Central Lobe consists of the pre- and postcentral gyri on the lateral surface and the Paracentral Lobule on the medial surface and corresponds to the sensorimotor cortex. The objective of the present study was to define the neural features, craniometric relationships, arterial supply, and venous drainage of the central lobe.

METHODS

Cadaveric hemispheres dissected using microsurgical techniques provided the material for this study.

RESULTS

The coronal suture is closer to the precentral gyrus and central sulcus at its lower rather than at its upper end, but they are closest at a point near where the superior temporal line crosses the coronal suture. The arterial supply of the lower two-thirds of the lateral surface of the central lobe was from the central, precentral, and anterior parietal branches that arose predominantly from the superior trunk of the middle cerebral artery. The medial surface and the superior third of the lateral surface were supplied by the posterior interior frontal, paracentral, and superior parietal branches of the pericallosal and callosomarginal arteries. The venous drainage of the superior two-thirds of the lateral surface and the central lobe on the medial surface was predominantly through the superior sagittal sinus, and the inferior third of the lateral surface was predominantly through the superficial sylvian veins to the sphenoparietal sinus or the vein of Labbé to the transverse sinus.

CONCLUSIONS

The pre- and postcentral gyri and paracentral lobule have a morphological and functional anatomy that differentiates them from the remainder of their respective lobes and are considered by many as a single lobe. An understanding of the anatomical relationships of the central lobe can be useful in preoperative planning and in establishing reliable intraoperative landmarks.