Rhoton

You are looking at 1 - 2 of 2 items for

  • By Author: Matsushima, Ken x
Clear All
Free access

Osamu Akiyama, Ken Matsushima, Abuzer Gungor, Satoshi Matsuo, Dylan J. Goodrich, R. Shane Tubbs, Paul Klimo Jr., Aaron A. Cohen-Gadol, Hajime Arai and Albert L. Rhoton Jr.

OBJECTIVE

Approaches to the pulvinar remain challenging because of the depth of the target, surrounding critical neural structures, and complicated arterial and venous relationships. The purpose of this study was to compare the surgical approaches to different parts of the pulvinar and to examine the efficacy of the endoscope as an adjunct to the operating microscope in this area.

METHODS

The pulvinar was examined in 6 formalin-fixed human cadaveric heads through 5 approaches: 4 above and 1 below the tentorium. Each approach was performed using both the surgical microscope and 0° or 45° rigid endoscopes.

RESULTS

The pulvinar has a lateral ventricular and a medial cisternal surface that are separated by the fornix and the choroidal fissure, which wrap around the posterior surface of the pulvinar. The medial cisternal part of the pulvinar can be further divided into upper and lower parts. The superior parietal lobule approach is suitable for lesions in the upper ventricular and cisternal parts. Interhemispheric precuneus and posterior transcallosal approaches are suitable for lesions in the part of the pulvinar forming the anterior wall of the atrium and adjacent cisternal part. The posterior interhemispheric transtentorial approach is suitable for lesions in the lower cisternal part and the supracerebellar infratentorial approach is suitable for lesions in the inferior and medial cisternal parts.

The microscope provided satisfactory views of the ventricular and cisternal surfaces of the pulvinar and adjacent neural and vascular structures. The endoscope provided multi-angled and wider views of the pulvinar and adjacent structures.

CONCLUSIONS

A combination of endoscopic and microsurgical techniques allows optimal exposure of the pulvinar.

Restricted access

Tomas Poblete, Xiaochun Jiang, Noritaka Komune, Ken Matsushima and Albert L. Rhoton Jr.

OBJECT

There continues to be confusion over how best to preserve the branches of the facial nerve to the frontalis muscle when elevating a frontotemporal (pterional) scalp flap. The object of this study was to examine the full course of the branches of the facial nerve that must be preserved to maintain innervation of the frontalis muscle during elevation of a frontotemporal scalp flap.

METHODS

Dissection was performed to follow the temporal branches of facial nerves along their course in 5 adult, cadaveric heads (n = 10 extracranial facial nerves).

RESULTS

Preserving the nerves to the frontalis muscle requires an understanding of the course of the nerves in 3 areas. The first area is on the outer surface of the temporalis muscle lateral to the superior temporal line (STL) where the interfascial or subfascial approaches are applied, the second is in the area medial to the STL where subpericranial dissection is needed, and the third is along the STL. Preserving the nerves crossing the STL requires an understanding of the complex fascial relationships at this line. It is important to preserve the nerves crossing the lateral and medial parts of the exposure, and the continuity of the nerves as they pass across the STL. Prior descriptions have focused largely on the area superficial to the temporalis muscle lateral to the STL.

CONCLUSIONS

Using the interfascial-subpericranial flap and the subfascial-subpericranial flap avoids opening the layer of loose areolar tissue between the temporal fascia and galea in the area lateral to the STL and between the galea and frontal pericranium in the area medial to the STL. It also preserves the continuity of the nerve crossing the STL. This technique allows for the preservation of the nerves to the frontalis muscle along their entire trajectory, from the uppermost part of the parotid gland to the frontalis muscle.