Rhoton

You are looking at 1 - 2 of 2 items for

  • By Author: Borba Moreira, Leandro x
Clear All
Restricted access

Ali Tayebi Meybodi, Leandro Borba Moreira, Michael T. Lawton, Jennifer M. Eschbacher, Evgenii G. Belykh, Michelle M. Felicella and Mark C. Preul

OBJECTIVE

In the current neurosurgical and anatomical literature, the intracanalicular segment of the ophthalmic artery (OphA) is usually described to be within the optic nerve dural sheath (ONDS), implying direct contact between the nerve and the artery inside the optic canal. In the present study, the authors sought to clarify the exact relationship between the OphA and ONDS.

METHODS

Ten cadaveric heads were subjected to endoscopic endonasal and transcranial exposures of the OphA in the optic canal (5 for each approach). The relationship between the OphA and ONDS was assessed. Histological examination of one specimen of the optic nerve and the accompanying OphA was also performed to confirm the relationship with the ONDS.

RESULTS

In all specimens, the OphA coursed between the two layers of the dura (endosteal and meningeal) and was not in direct contact with the optic nerve, except for the first few millimeters of the proximal optic canal before it pierced the ONDS. Upon reaching the orbit, the two layers of the dura separated and allowed the OphA to literally float within the orbital fat. The meningeal dura continued as the ONDS, whereas the endosteal dura became the periorbita.

CONCLUSIONS

This study clarifies the interdural course of the OphA within the optic canal. This anatomical nuance has important neurosurgical implications regarding safe exposure and manipulation of the OphA.

Full access

Ali Tayebi Meybodi, Leandro Borba Moreira, Andrew S. Little, Michael T. Lawton and Mark C. Preul

OBJECTIVE

Endoscopic endonasal approaches (EEAs) are increasingly being incorporated into the neurosurgeon’s armamentarium for treatment of various pathologies, including paraclinoid aneurysms. However, few anatomical assessments have been performed on the use of EEA for this purpose. The aim of the present study was to provide a comprehensive anatomical assessment of the EEA for the treatment of paraclinoid aneurysms.

METHODS

Five cadaveric heads underwent an endonasal transplanum-transtuberculum approach to expose the paraclinoid area. The feasibility of obtaining proximal and distal internal carotid artery (ICA) control as well as the topographic location of the origin of the ophthalmic artery (OphA) relative to dural landmarks were assessed. Limitations of the EEA in exposing the supraclinoid ICA were also recorded to identify favorable paraclinoid ICA aneurysm projections for EEA.

RESULTS

The extracavernous paraclival and clinoidal ICAs were favorable segments for establishing proximal control. Clipping the extracavernous ICA risked injury to the trigeminal and abducens nerves, whereas clipping the clinoidal segment put the oculomotor nerve at risk. The OphA origin was found within 4 mm of the medial opticocarotid point on a line connecting the midtubercular recess point to the medial vertex of the lateral opticocarotid recess. An average 7.2-mm length of the supraclinoid ICA could be safely clipped for distal control. Assessments showed that small superiorly or medially projecting aneurysms were favorable candidates for clipping via EEA.

CONCLUSIONS

When used for paraclinoid aneurysms, the EEA carries certain risks to adjacent neurovascular structures during proximal control, dural opening, and distal control. While some authors have promoted this approach as feasible, this work demonstrates that it has significant limitations and may only be appropriate in highly selected cases that are not amenable to coiling or clipping. Further clinical experience with this approach helps to delineate its risks and benefits.