Rhoton

You are looking at 11 - 20 of 45 items for

  • All content x
Clear All
Full access

Huy Q. Truong, Edinson Najera, Robert Zanabria-Ortiz, Emrah Celtikci, Xicai Sun, Hamid Borghei-Razavi, Paul A. Gardner, and Juan C. Fernandez-Miranda

OBJECTIVE

The endoscopic endonasal approach has become a routine corridor to the suprasellar region. The superior hypophyseal arteries (SHAs) are intimately related to lesions in the suprasellar space, such as craniopharyngiomas and meningiomas. Here the authors investigate the surgical anatomy and variations of the SHA from the endoscopic endonasal perspective.

METHODS

Thirty anatomical specimens with vascular injection were used for endoscopic endonasal dissection. The number of SHAs and their origin, course, branching, anastomoses, and areas of supply were collected and analyzed.

RESULTS

A total of 110 SHAs arising from 60 internal carotid arteries (ICAs), or 1.83 SHAs per ICA (range 0–3), were found. The most proximal SHA always ran in the preinfundibular space and provided the major blood supply to the infundibulum, optic chiasm, and proximal optic nerve; it was defined as the primary SHA (pSHA). The more distal SHA(s), present in 78.3% of sides, ran in the retroinfundibular space and supplied the stalk and may also supply the tuber cinereum and optic tracts. In the two sides (3.3%) in which no SHA was present, the territory was covered by a pair of infundibular arteries originating from the posterior communicating artery. Two-thirds of the pSHAs originated proximal to the distal dural ring; half of these arose from the carotid cave portion of the ICA, whereas the other half originated proximal to the cave. Four branching patterns of the pSHA were recognized, with the most common pattern (41.7%) consisting of three or more branches with a tree-like pattern. Descending branches were absent in 25% of cases. Preinfundibular anastomoses between pSHAs were found in all specimens. Anastomoses between the pSHA and the secondary SHA (sSHA) or the infundibular arteries were found in 75% cases.

CONCLUSIONS

The first SHA almost always supplies the infundibulum, optic chiasm, and proximal optic nerve and represents the pSHA. Compromising this artery can cause a visual deficit. Unilateral injury to the pSHA is less likely to cause an endocrine deficit given the artery’s abundant anastomoses. A detailed understanding of the surgical anatomy of the SHA and its many variations may help surgeons when approaching challenging lesions in the suprasellar region.

Full access

Ali Tayebi Meybodi, Andrew S. Little, Vera Vigo, Arnau Benet, Sofia Kakaizada, and Michael T. Lawton

OBJECTIVE

The transpterygoid extension of the endoscopic endonasal approach provides exposure of the petrous apex, Meckel’s cave, paraclival area, and the infratemporal fossa. Safe and efficient localization of the lacerum segment of the internal carotid artery (ICA) is a crucial part of such exposure. The aim of this study is to introduce a novel landmark for localization of the lacerum ICA.

METHODS

Ten cadaveric heads were prepared for transnasal endoscopic dissection. The floor of the sphenoid sinus was drilled to expose an extension of the pharyngobasilar fascia between the sphenoid floor and the pterygoid process (the pterygoclival ligament). Several features of the pterygoclival ligament were assessed. In addition, 31 dry skulls were studied to assess features of the bony groove harboring the pterygoclival ligament.

RESULTS

The pterygoclival ligament was identified bilaterally during drilling of the sphenoid floor in all specimens. The ligament started a few millimeters posterior to the posterior end of the vomer alae and invariably extended posterolaterally and superiorly to blend into the fibrous tissue around the lacerum ICA. The mean length of the ligament was 10.5 ± 1.7 mm. The mean distance between the anterior end of the ligament and midline was 5.2 ± 1.2 mm. The mean distance between the posterior end of the ligament and midline was 12.3 ± 1.4 mm. The bony pterygoclival groove was identified at the confluence of the vomer, pterygoid process of the sphenoid, and basilar part of the occipital bone, running from posterolateral to anteromedial. The mean length of the groove was 7.7 ± 1.8 mm. Its posterolateral end faced the anteromedial aspect of the foramen lacerum medial to the posterior end of the vidian canal. A clinical case illustration is also provided.

CONCLUSIONS

The pterygoclival ligament is a consistent landmark for localization of the lacerum ICA. It may be used as an adjunct or alternative to the vidian nerve to localize the ICA during endoscopic endonasal surgery.

Full access

Christos Koutsarnakis, Aristotelis V. Kalyvas, Spyridon Komaitis, Faidon Liakos, Georgios P. Skandalakis, Christos Anagnostopoulos, and George Stranjalis

OBJECTIVE

The authors investigated the specific topographic relationship of the optic radiation fibers to the roof and floor of the ventricular atrium because the current literature is ambiguous.

METHODS

Thirty-five normal, adult, formalin-fixed cerebral hemispheres and 30 focused MRI slices at the level of the atrium were included in the study. The correlative anatomy of the optic radiation with regard to the atrial roof and floor was investigated in 15 specimens, each through focused fiber microdissections. The remaining 5 hemispheres were explored with particular emphasis on the trajectory of the collateral sulcus in relation to the floor of the atrium. In addition, the trajectory of the collateral sulcus was evaluated in 30 MRI scans.

RESULTS

The atrial roof was observed to be devoid of optic radiations in all studied hemispheres, whereas the atrial floor was seen to harbor optic fibers on its lateral part. Moreover, the trajectory of the intraparietal sulcus, when followed, was always seen to correspond to the roof of the atrium, thus avoiding the optic pathway, whereas that of the collateral sulcus was found to lead to either the lateral atrial floor or outside the ventricle in 88% of the cases, therefore hitting the visual pathway.

CONCLUSIONS

Operative corridors accessing the ventricular atrium should be carefully tailored through detailed preoperative planning and effective use of intraoperative navigation to increase patient safety and enhance the surgeon’s maneuverability. The authors strongly emphasize the significance of accurate anatomical knowledge.

Full access

Abuzer Güngör, Şevki Serhat Baydın, Vanessa M. Holanda, Erik H. Middlebrooks, Cihan Isler, Bekir Tugcu, Kelly Foote, and Necmettin Tanriover

OBJECTIVE

Despite the extensive use of the subthalamic nucleus (STN) as a deep brain stimulation (DBS) target, unveiling the extensive functional connectivity of the nucleus, relating its structural connectivity to the stimulation-induced adverse effects, and thus optimizing the STN targeting still remain challenging. Mastering the 3D anatomy of the STN region should be the fundamental goal to achieve ideal surgical results, due to the deep-seated and obscure position of the nucleus, variable shape and relatively small size, oblique orientation, and extensive structural connectivity. In the present study, the authors aimed to delineate the 3D anatomy of the STN and unveil the complex relationship between the anatomical structures within the STN region using fiber dissection technique, 3D reconstructions of high-resolution MRI, and fiber tracking using diffusion tractography utilizing a generalized q-sampling imaging (GQI) model.

METHODS

Fiber dissection was performed in 20 hemispheres and 3 cadaveric heads using the Klingler method. Fiber dissections of the brain were performed from all orientations in a stepwise manner to reveal the 3D anatomy of the STN. In addition, 3 brains were cut into 5-mm coronal, axial, and sagittal slices to show the sectional anatomy. GQI data were also used to elucidate the connections among hubs within the STN region.

RESULTS

The study correlated the results of STN fiber dissection with those of 3D MRI reconstruction and tractography using neuronavigation. A 3D terrain model of the subthalamic area encircling the STN was built to clarify its anatomical relations with the putamen, globus pallidus internus, globus pallidus externus, internal capsule, caudate nucleus laterally, substantia nigra inferiorly, zona incerta superiorly, and red nucleus medially. The authors also describe the relationship of the medial lemniscus, oculomotor nerve fibers, and the medial forebrain bundle with the STN using tractography with a 3D STN model.

CONCLUSIONS

This study examines the complex 3D anatomy of the STN and peri-subthalamic area. In comparison with previous clinical data on STN targeting, the results of this study promise further understanding of the structural connections of the STN, the exact location of the fiber compositions within the region, and clinical applications such as stimulation-induced adverse effects during DBS targeting.

Full access

Ali Tayebi Meybodi, Sirin Gandhi, Mark C. Preul, and Michael T. Lawton

OBJECTIVE

Exposure of the vertebral artery (VA) between C-1 and C-2 vertebrae (atlantoaxial VA) may be necessary in a variety of pathologies of the craniovertebral junction. Current methods to expose this segment of the VA entail sharp dissection of muscles close to the internal jugular vein and the spinal accessory nerve. The present study assesses the technique of exposing the atlantoaxial VA through a newly defined muscular triangle at the craniovertebral junction.

METHODS

Five cadaveric heads were prepared for surgical simulation in prone position, turned 30°–45° toward the side of exposure. The atlantoaxial VA was exposed through the subatlantic triangle after reflecting the sternocleidomastoid and splenius capitis muscles inferiorly. The subatlantic triangle was formed by 3 groups of muscles: 1) the levator scapulae and splenius cervicis muscles inferiorly and laterally, 2) the longissimus capitis muscle inferiorly and medially, and 3) the inferior oblique capitis superiorly. The lengths of the VA exposed through the triangle before and after unroofing the C-2 transverse foramen were measured.

RESULTS

The subatlantic triangle consistently provided access to the whole length of atlantoaxial VA. The average length of the VA exposed via the subatlantic triangle was 19.5 mm. This average increased to 31.5 mm after the VA was released at the C-2 transverse foramen.

CONCLUSIONS

The subatlantic triangle provides a simple and straightforward pathway to expose the atlantoaxial VA. The proposed method may be useful during posterior approaches to the craniovertebral junction should early exposure and control of the atlantoaxial VA become necessary.

Full access

Toshio Matsushima, Ken Matsushima, Shigeaki Kobayashi, J. Richard Lister, and Jacques J. Morcos

Dr. Albert L. Rhoton Jr. was a pioneer of the study of microneurosurgical anatomy. Championing this field over the past half century, he produced more than 500 publications. In this paper, the authors review his body of work, focusing on approximately 160 original articles authored by Rhoton and his microneuroanatomy fellows. The articles are categorized chronologically into 5 stages: 1) dawn of microneurosurgical anatomy, 2) study of basic anatomy for general neurosurgery, 3) study for skull base surgery, 4) study of the internal structures of the brain by fiber dissection, and 5) surgical anatomy dealing with new advanced surgical approaches. Rhoton introduced many new research ideas and surgical techniques and approaches, along with better microsurgery instruments, through studying and teaching microsurgical anatomy, especially during the first stage. The characteristic features of each stage are explained and the transition phases of his projects are reviewed.

Full access

Eduardo Carvalhal Ribas, Kaan Yağmurlu, Evandro de Oliveira, Guilherme Carvalhal Ribas, and Albert Rhoton Jr.

OBJECTIVE

The purpose of this study was to describe in detail the cortical and subcortical anatomy of the central core of the brain, defining its limits, with particular attention to the topography and relationships of the thalamus, basal ganglia, and related white matter pathways and vessels.

METHODS

The authors studied 19 cerebral hemispheres. The vascular systems of all of the specimens were injected with colored silicone, and the specimens were then frozen for at least 1 month to facilitate identification of individual fiber tracts. The dissections were performed in a stepwise manner, locating each gray matter nucleus and white matter pathway at different depths inside the central core. The course of fiber pathways was also noted in relation to the insular limiting sulci.

RESULTS

The insular surface is the most superficial aspect of the central core and is divided by a central sulcus into an anterior portion, usually containing 3 short gyri, and a posterior portion, with 2 long gyri. It is bounded by the anterior limiting sulcus, the superior limiting sulcus, and the inferior limiting sulcus. The extreme capsule is directly underneath the insular surface and is composed of short association fibers that extend toward all the opercula. The claustrum lies deep to the extreme capsule, and the external capsule is found medial to it. Three fiber pathways contribute to form both the extreme and external capsules, and they lie in a sequential anteroposterior disposition: the uncinate fascicle, the inferior fronto-occipital fascicle, and claustrocortical fibers. The putamen and the globus pallidus are between the external capsule, laterally, and the internal capsule, medially. The internal capsule is present medial to almost all insular limiting sulci and most of the insular surface, but not to their most anteroinferior portions. This anteroinferior portion of the central core has a more complex anatomy and is distinguished in this paper as the “anterior perforated substance region.” The caudate nucleus and thalamus lie medial to the internal capsule, as the most medial structures of the central core. While the anterior half of the central core is related to the head of the caudate nucleus, the posterior half is related to the thalamus, and hence to each associated portion of the internal capsule between these structures and the insular surface. The central core stands on top of the brainstem. The brainstem and central core are connected by several white matter pathways and are not separated from each other by any natural division. The authors propose a subdivision of the central core into quadrants and describe each in detail. The functional importance of each structure is highlighted, and surgical approaches are suggested for each quadrant of the central core.

CONCLUSIONS

As a general rule, the internal capsule and its vascularization should be seen as a parasagittal barrier with great functional importance. This is of particular importance in choosing surgical approaches within this region.

Full access

Alberto Di Somma, Norberto Andaluz, Luigi Maria Cavallo, Matteo de Notaris, Iacopo Dallan, Domenico Solari, Lee A. Zimmer, Jeffrey T. Keller, Mario Zuccarello, Alberto Prats-Galino, and Paolo Cappabianca

OBJECTIVE

Recent studies have proposed the superior eyelid endoscopic transorbital approach as a new minimally invasive route to access orbital lesions, mostly in otolaryngology and maxillofacial surgeries. The authors undertook this anatomical study in order to contribute a neurosurgical perspective, exploring the anterior and middle cranial fossa areas through this purely endoscopic transorbital trajectory.

METHODS

Anatomical dissections were performed in 10 human cadaveric heads (20 sides) using 0° and 30° endoscopes. A step-by-step description of the superior eyelid transorbital endoscopic route and surgically oriented classification are provided.

RESULTS

The authors’ cadaveric prosection of this approach defined 3 modular routes that could be combined. Two corridors using bone removal lateral to the superior and inferior orbital fissures exposed the middle and anterior cranial fossa (lateral orbital corridors to the anterior and middle cranial base) to unveil the temporal pole region, lateral wall of the cavernous sinus, middle cranial fossa floor, and frontobasal area (i.e., orbital and recti gyri of the frontal lobe). Combined, these 2 corridors exposed the lateral aspect of the lesser sphenoid wing with the Sylvian region (combined lateral orbital corridor to the anterior and middle cranial fossa, with lesser sphenoid wing removal). The medial corridor, with extension of bone removal medially to the superior and inferior orbital fissure, afforded exposure of the opticocarotid area (medial orbital corridor to the opticocarotid area).

CONCLUSIONS

Along with its minimally invasive nature, the superior eyelid transorbital approach allows good visualization and manipulation of anatomical structures mainly located in the anterior and middle cranial fossae (i.e., lateral to the superior and inferior orbital fissures). The visualization and management of the opticocarotid region medial to the superior orbital fissure are more complex. Further studies are needed to prove clinical applications of this relatively novel surgical pathway.

Free access

Osamu Akiyama, Ken Matsushima, Maximiliano Nunez, Satoshi Matsuo, Akihide Kondo, Hajime Arai, Albert L. Rhoton Jr., and Toshio Matsushima

OBJECTIVE

The lateral recess is a unique structure communicating between the ventricle and cistern, which is exposed when treating lesions involving the fourth ventricle and the brainstem with surgical approaches such as the transcerebellomedullary fissure approach. In this study, the authors examined the microsurgical anatomy around the lateral recess, including the fiber tracts, and analyzed their findings with respect to surgical exposure of the lateral recess and entry into the lower pons.

METHODS

Ten cadaveric heads were examined with microsurgical techniques, and 2 heads were examined with fiber dissection to clarify the anatomy between the lateral recess and adjacent structures. The lateral and medial routes directed to the lateral recess in the transcerebellomedullary fissure approach were demonstrated. A morphometric study was conducted in the 10 cadaveric heads (20 sides).

RESULTS

The lateral recess was classified into medullary and cisternal segments. The medial and lateral routes in the transcerebellomedullary fissure approach provided access to approximately 140º–150º of the posteroinferior circumference of the lateral recess. The floccular peduncle ran rostral to the lateral recess, and this region was considered to be a potential safe entry zone to the lower pons. By appropriately selecting either route, medial-to-lateral or lateral-to-medial entry axis is possible, and combining both routes provided wide exposure of the lower pons around the lateral recess.

CONCLUSIONS

The medial and lateral routes of the transcerebellomedullary fissure approach provided wide exposure of the lateral recess, and incision around the floccular peduncle is a potential new safe entry zone to the lower pons.

Full access

Feres Chaddad-Neto, Marcos Devanir Silva da Costa, Baran Bozkurt, Hugo Leonardo Doria-Netto, Daniel de Araujo Paz, Ricardo da Silva Centeno, Andrew W. Grande, Sergio Cavalheiro, Kaan Yağmurlu, Robert F. Spetzler, and Mark C. Preul

OBJECTIVE

The authors report a novel surgical route from a superior anatomical aspect—the contralateral anterior interhemispheric-transcallosal-transrostral approach—to a lesion located in the subcallosal region. The neurosurgical approach to the subcallosal region is challenging due to its deep location and close relationship with important vascular structures. Anterior and inferior routes to the subcallosal region have been described but risk damaging the branches of the anterior cerebral artery.

METHODS

Three formalin-fixed and silicone-injected adult cadaveric heads were studied to demonstrate the relationships between the transventricular surgical approach and the subcallosal region. The surgical, clinical, and radiological history of a 39-year-old man with a subcallosal cavernous malformation was retrospectively used to document the neurological examination and radiographic parameters of such a case.

RESULTS

The contralateral anterior interhemispheric-transcallosal-transrostral approach provides access to the subcallosal area that also includes the inferior portion of the pericallosal cistern, lamina terminalis cistern, the paraterminal and paraolfactory gyri, and the anterior surface of the optic chiasm. The approach avoids the neurocritical perforating branches of the anterior communicating artery.

CONCLUSIONS

The contralateral anterior interhemispheric-transcallosal-transrostral approach may be an alternative route to subcallosal area lesions, with less risk to the branches of the anterior cerebral artery, particularly the anterior communicating artery perforators.