Rhoton

You are looking at 1 - 3 of 3 items for

  • Refine by Access: user x
  • By Author: Stranjalis, George x
Clear All
Restricted access

Spyridon Komaitis, Christos Koutsarnakis, Evgenia Lani, Theodosis Kalamatianos, Evangelos Drosos, Georgios P. Skandalakis, Faidon Liakos, Evangelia Liouta, Aristotelis V. Kalyvas, and George Stranjalis

OBJECTIVE

The authors sought to investigate the very existence and map the topography, morphology, and axonal connectivity of a thus far ill-defined subcortical pathway known as the fronto-caudate tract (FCT) since there is a paucity of direct structural evidence regarding this pathway in the relevant literature.

METHODS

Twenty normal adult cadaveric formalin-fixed cerebral hemispheres (10 left and 10 right) were explored through the fiber microdissection technique. Lateral to medial and medial to lateral dissections were carried out in a tandem manner in all hemispheres. Attention was focused on the prefrontal area and central core since previous diffusion tensor imaging studies have recorded the tract to reside in this territory.

RESULTS

In all cases, the authors readily identified the FCT as a fan-shaped pathway lying in the most medial layer of the corona radiata and traveling across the subependymal plane before terminating on the superolateral margin of the head and anterior part of the body of the caudate nucleus. The FCT could be adequately differentiated from adjacent fiber tracts and was consistently recorded to terminate in Brodmann areas 8, 9, 10, and 11 (anterior pre–supplementary motor area and the dorsolateral, frontopolar, and fronto-orbital prefrontal cortices). The authors were also able to divide the tract into a ventral and a dorsal segment according to the respective topography and connectivity observed. Hemispheric asymmetries were not observed, but instead the authors disclosed asymmetry within the FCT, with the ventral segment always being thicker and bulkier than the dorsal one.

CONCLUSIONS

By using the fiber microdissection technique, the authors provide sound structural evidence on the topography, morphology, and connectional anatomy of the FCT as a distinct part of a wider frontostriatal circuitry. The findings are in line with the tract’s putative functional implications in high-order motor and behavioral processes and can potentially inform current surgical practice in the fields of neuro-oncology and functional neurosurgery.

Restricted access

Spyridon Komaitis, Christos Koutsarnakis, Evgenia Lani, Theodosis Kalamatianos, Evangelos Drosos, Georgios P. Skandalakis, Faidon Liakos, Evangelia Liouta, Aristotelis V. Kalyvas, and George Stranjalis

OBJECTIVE

The authors sought to investigate the very existence and map the topography, morphology, and axonal connectivity of a thus far ill-defined subcortical pathway known as the fronto-caudate tract (FCT) since there is a paucity of direct structural evidence regarding this pathway in the relevant literature.

METHODS

Twenty normal adult cadaveric formalin-fixed cerebral hemispheres (10 left and 10 right) were explored through the fiber microdissection technique. Lateral to medial and medial to lateral dissections were carried out in a tandem manner in all hemispheres. Attention was focused on the prefrontal area and central core since previous diffusion tensor imaging studies have recorded the tract to reside in this territory.

RESULTS

In all cases, the authors readily identified the FCT as a fan-shaped pathway lying in the most medial layer of the corona radiata and traveling across the subependymal plane before terminating on the superolateral margin of the head and anterior part of the body of the caudate nucleus. The FCT could be adequately differentiated from adjacent fiber tracts and was consistently recorded to terminate in Brodmann areas 8, 9, 10, and 11 (anterior pre–supplementary motor area and the dorsolateral, frontopolar, and fronto-orbital prefrontal cortices). The authors were also able to divide the tract into a ventral and a dorsal segment according to the respective topography and connectivity observed. Hemispheric asymmetries were not observed, but instead the authors disclosed asymmetry within the FCT, with the ventral segment always being thicker and bulkier than the dorsal one.

CONCLUSIONS

By using the fiber microdissection technique, the authors provide sound structural evidence on the topography, morphology, and connectional anatomy of the FCT as a distinct part of a wider frontostriatal circuitry. The findings are in line with the tract’s putative functional implications in high-order motor and behavioral processes and can potentially inform current surgical practice in the fields of neuro-oncology and functional neurosurgery.

Full access

Christos Koutsarnakis, Aristotelis V. Kalyvas, Spyridon Komaitis, Faidon Liakos, Georgios P. Skandalakis, Christos Anagnostopoulos, and George Stranjalis

OBJECTIVE

The authors investigated the specific topographic relationship of the optic radiation fibers to the roof and floor of the ventricular atrium because the current literature is ambiguous.

METHODS

Thirty-five normal, adult, formalin-fixed cerebral hemispheres and 30 focused MRI slices at the level of the atrium were included in the study. The correlative anatomy of the optic radiation with regard to the atrial roof and floor was investigated in 15 specimens, each through focused fiber microdissections. The remaining 5 hemispheres were explored with particular emphasis on the trajectory of the collateral sulcus in relation to the floor of the atrium. In addition, the trajectory of the collateral sulcus was evaluated in 30 MRI scans.

RESULTS

The atrial roof was observed to be devoid of optic radiations in all studied hemispheres, whereas the atrial floor was seen to harbor optic fibers on its lateral part. Moreover, the trajectory of the intraparietal sulcus, when followed, was always seen to correspond to the roof of the atrium, thus avoiding the optic pathway, whereas that of the collateral sulcus was found to lead to either the lateral atrial floor or outside the ventricle in 88% of the cases, therefore hitting the visual pathway.

CONCLUSIONS

Operative corridors accessing the ventricular atrium should be carefully tailored through detailed preoperative planning and effective use of intraoperative navigation to increase patient safety and enhance the surgeon’s maneuverability. The authors strongly emphasize the significance of accurate anatomical knowledge.