Rhoton

You are looking at 51 - 60 of 61 items for

  • Refine by Access: all x
Clear All
Free access

Osamu Akiyama, Ken Matsushima, Abuzer Gungor, Satoshi Matsuo, Dylan J. Goodrich, R. Shane Tubbs, Paul Klimo Jr., Aaron A. Cohen-Gadol, Hajime Arai, and Albert L. Rhoton Jr.

OBJECTIVE

Approaches to the pulvinar remain challenging because of the depth of the target, surrounding critical neural structures, and complicated arterial and venous relationships. The purpose of this study was to compare the surgical approaches to different parts of the pulvinar and to examine the efficacy of the endoscope as an adjunct to the operating microscope in this area.

METHODS

The pulvinar was examined in 6 formalin-fixed human cadaveric heads through 5 approaches: 4 above and 1 below the tentorium. Each approach was performed using both the surgical microscope and 0° or 45° rigid endoscopes.

RESULTS

The pulvinar has a lateral ventricular and a medial cisternal surface that are separated by the fornix and the choroidal fissure, which wrap around the posterior surface of the pulvinar. The medial cisternal part of the pulvinar can be further divided into upper and lower parts. The superior parietal lobule approach is suitable for lesions in the upper ventricular and cisternal parts. Interhemispheric precuneus and posterior transcallosal approaches are suitable for lesions in the part of the pulvinar forming the anterior wall of the atrium and adjacent cisternal part. The posterior interhemispheric transtentorial approach is suitable for lesions in the lower cisternal part and the supracerebellar infratentorial approach is suitable for lesions in the inferior and medial cisternal parts.

The microscope provided satisfactory views of the ventricular and cisternal surfaces of the pulvinar and adjacent neural and vascular structures. The endoscope provided multi-angled and wider views of the pulvinar and adjacent structures.

CONCLUSIONS

A combination of endoscopic and microsurgical techniques allows optimal exposure of the pulvinar.

Free access

Kaan Yagmurlu, Sam Safavi-Abbasi, Evgenii Belykh, M. Yashar S. Kalani, Peter Nakaji, Albert L. Rhoton Jr., Robert F. Spetzler, and Mark C. Preul

OBJECTIVE

The aim of this investigation was to modify the mini-pterional and mini-orbitozygomatic (mini-OZ) approaches in order to reduce the amount of tissue traumatization caused and to compare the use of the 2 approaches in the removal of circle of Willis aneurysms based on the authors' clinical experience and quantitative analysis.

METHODS

Three formalin-fixed adult cadaveric heads injected with colored silicone were examined. Surgical freedom and angle of attack of the mini-pterional and mini-OZ approaches were measured at 9 anatomical points, and the measurements were compared. The authors also retrospectively reviewed the cases of 396 patients with ruptured and unruptured single aneurysms in the circle of Willis treated by microsurgical techniques at their institution between January 2006 and November 2014.

RESULTS

A significant difference in surgical freedom was found in favor of the mini-pterional approach for access to the ipsilateral internal carotid artery (ICA) and middle cerebral artery (MCA) bifurcations, the most distal point of the ipsilateral posterior cerebral artery (PCA), and the basilar artery (BA) tip. No statistically significant differences were found between the mini-pterional and mini-OZ approaches for access to the posterior clinoid process, the most distal point of the superior cerebellar artery (SCA), the anterior communicating artery (ACoA), the contralateral ICA bifurcation, and the most distal point of the contralateral MCA. A trend toward increasing surgical freedom was found for the mini-OZ approach to the ACoA and the contralateral ICA bifurcation. The lengths exposed through the mini-OZ approach were longer than those exposed by the mini-pterional approach for the ipsilateral PCA segment (11.5 ± 1.9 mm) between the BA and the most distal point of the P2 segment of the PCA, for the ipsilateral SCA (10.5 ± 1.1 mm) between the BA and the most distal point of the SCA, and for the contralateral anterior cerebral artery (ACA) (21 ± 6.1 mm) between the ICA bifurcation and the most distal point of the A2 segment of the ACA. The exposed length of the contralateral MCA (24.2 ± 8.6 mm) between the contralateral ICA bifurcation and the most distal point of the MCA segment was longer through the mini-pterional approach. The vertical angle of attack (anteroposterior direction) was significantly greater with the mini-pterional approach than with the mini-OZ approach, except in the ACoA and contralateral ICA bifurcation. The horizontal angle of attack (mediolateral direction) was similar with both approaches, except in the ACoA, contralateral ICA bifurcation, and contralateral MCA bifurcation, where the angle was significantly increased in the mini-OZ approach.

CONCLUSIONS

The mini-pterional and mini-OZ approaches, as currently performed in select patients, provide less tissue traumatization (i.e., less temporal muscle manipulation, less brain parenchyma retraction) from the skin to the aneurysm than standard approaches. Anatomical quantitative analysis showed that the mini-OZ approach provides better exposure to the contralateral side for controlling the contralateral parent arteries and multiple aneurysms. The mini-pterional approach has greater surgical freedom (maneuverability) for ipsilateral circle of Willis aneurysms.

Free access

João Luiz Vitorino Araujo, José C. E. Veiga, Hung Tzu Wen, Almir F. de Andrade, Manoel J. Teixeira, José P. Otoch, Albert L. Rhoton Jr., Mark C. Preul, Robert F. Spetzler, and Eberval G. Figueiredo

OBJECTIVE

Access to the third ventricle is a veritable challenge to neurosurgeons. In this context, anatomical and morphometric studies are useful for establishing the limitations and advantages of a particular surgical approach. The transchoroidal approach is versatile and provides adequate exposure of the middle and posterior regions of the third ventricle. However, the fornix column limits the exposure of the anterior region of the third ventricle. There is evidence that the unilateral section of the fornix column has little effect on cognitive function. This study compared the anatomical exposure afforded by the transforniceal-transchoroidal approach with that of the transchoroidal approach. In addition, a morphometric evaluation of structures that are relevant to and common in the 2 approaches was performed.

METHODS

The anatomical exposure provided by the transcallosal-transchoroidal and transcallosal-transforniceal-transchoroidal approaches was compared in 8 fresh cadavers, using a neuronavigation system. The working area, microsurgical exposure area, and angular exposure on the longitudinal and transversal planes of 2 anatomical targets (tuber cinereum and cerebral aqueduct) were compared. Additionally, the thickness of the right frontal lobe parenchyma, thickness of the corpus callosum trunk, and longitudinal diameter of the interventricular foramen were measured. The values obtained were submitted to statistical analysis using the Wilcoxon test.

RESULTS

In the quantitative evaluation, compared with the transchoroidal approach, the transforniceal-transchoroidal approach provided a greater mean working area (transforniceal-transchoroidal 150 ± 11 mm2; transchoroidal 121 ± 8 mm2; p < 0.05), larger mean microsurgical exposure area (transforniceal-transchoroidal 101 ± 9 mm2; transchoroidal 80 ± 5 mm2; p < 0.05), larger mean angular exposure area on the longitudinal plane for the tuber cinereum (transforniceal-transchoroidal 71° ± 7°; transchoroidal 64° ± 6°; p < 0.05), and larger mean angular exposure area on the longitudinal plane for the cerebral aqueduct (transforniceal-transchoroidal 62° ± 6°; transchoroidal 55° ± 5°; p < 0.05). No differences were observed in angular exposure along the transverse axis for either anatomical target (tuber cinereum and cerebral aqueduct; p > 0.05). The mean thickness of the right frontal lobe parenchyma was 35 ± 3 mm, the mean thickness of the corpus callosum trunk was 10 ± 1 mm, and the mean longitudinal diameter of the interventricular foramen was 4.6 ± 0.4 mm. In the qualitative assessment, it was noted that the transforniceal-transchoroidal approach led to greater exposure of the third ventricle anterior region structures. There was no difference between approaches in the exposure of the structures of the middle and posterior region.

CONCLUSIONS

The transforniceal-transchoroidal approach provides greater surgical exposure of the third ventricle anterior region than that offered by the transchoroidal approach. In the population studied, morphometric analysis established mean values for anatomical structures common to both approaches.

Full access

Jian Wang, Fumitaka Yoshioka, Wonil Joo, Noritaka Komune, Vicent Quilis-Quesada, and Albert L. Rhoton Jr.

OBJECTIVE

The object of this study was to examine the relationships of the cochlea as a guide for avoiding both cochlear damage with loss of hearing in middle fossa approaches and injury to adjacent structures in approaches directed through the cochlea.

METHODS

Twenty adult cadaveric middle fossae were examined using magnifications of ×3 to ×40.

RESULTS

The cochlea sits below the floor of the middle fossa in the area between and below the labyrinthine segment of the facial nerve and greater petrosal nerve (GPN) and adjacent to the lateral genu of the petrous carotid. Approximately one-third of the cochlea extends below the medial edge of the labyrinthine segment of the facial nerve, geniculate ganglion, and proximal part of the GPN. The medial part of the basal and middle turns are the parts at greatest risk in drilling the floor of the middle fossa to expose the nerves in middle fossa approaches to the internal acoustic meatus and in anterior petrosectomy approaches. Resection of the cochlea is used selectively in extending approaches through the mastoid toward the lateral edge of the clivus and front of the brainstem.

CONCLUSIONS

An understanding of the location and relationships of the cochlea will reduce the likelihood of cochlear damage with hearing loss in approaches directed through the middle fossa and reduce the incidence of injury to adjacent structures in approaches directed through the cochlea.

Full access

Ali Tayebi Meybodi, Michael T. Lawton, Halima Tabani, and Arnau Benet

OBJECTIVE

Surgical access to the lateral recess of the fourth ventricle (LR) is suboptimal with existing transvermian and telovelar approaches because of limited lateral exposure, significant retraction of the cerebellar tonsil, and steep trajectories near brainstem perforator arteries. The goal in this study was to assess surgical exposure of the tonsillobiventral fissure approach to the LR, and to describe the relevant anatomy.

METHODS

Two formaldehyde-fixed cerebella were used to study the anatomical relationships of the LR. Also, the tonsillobiventral fissure approach was simulated in 8 specimens through a lateral suboccipital craniotomy.

RESULTS

The pattern of the cerebellar folia and the cortical branches of the posterior inferior cerebellar artery were key landmarks to identifying the tonsillobiventral fissure. Splitting the tonsillobiventral fissure allowed a direct and safe surgical trajectory to the LR and into the cerebellopontine cistern. The proposed approach reduces cervical flexion and optimizes the surgical angle of attack.

CONCLUSIONS

The tonsillobiventral fissure approach is a feasible and effective option for exposing the LR. This approach has more favorable trajectories and positions for the patient and the surgeon, and it should be added to the armamentarium for lesions in this location.

Full access

Satoshi Matsuo, Serhat Baydin, Abuzer Güngör, Koichi Miki, Noritaka Komune, Ryota Kurogi, Koji Iihara, and Albert L. Rhoton Jr.

OBJECTIVE

A common approach to lesions of the pineal region is along the midline below the torcula. However, reports of how shifting the approach off midline affects the surgical exposure and relationships between the tributaries of the vein of Galen are limited. The purpose of this study is to examine the microsurgical and endoscopic anatomy of the pineal region as seen through the supracerebellar infratentorial approaches, including midline, paramedian, lateral, and far-lateral routes.

METHODS

The quadrigeminal cisterns of 8 formalin-fixed adult cadaveric heads were dissected and examined with the aid of a surgical microscope and straight endoscope. Twenty CT angiograms were examined to measure the depth of the pineal gland, slope of the tentorial surface of the cerebellum, and angle of approach to the pineal gland in each approach.

RESULTS

The midline supracerebellar route is the shortest and provides direct exposure of the pineal gland, although the culmen and inferior and superior vermian tributaries of the vein of Galen frequently block this exposure. The off-midline routes provide a surgical exposure that, although slightly deeper, may reduce the need for venous sacrifice at both the level of the veins from the superior cerebellar surface entering the tentorial sinuses and at the level of the tributaries of the vein of Galen in the quadrigeminal cistern, and require less cerebellar retraction. Shifting from midline to off-midline exposure also provides a better view of the cerebellomesencephalic fissure, collicular plate, and trochlear nerve than the midline approaches. Endoscopic assistance may aid exposure of the pineal gland while preserving the bridging veins.

CONCLUSIONS

Understanding the characteristics of different infratentorial routes to the pineal gland will aid in gaining a better view of the pineal gland and cerebellomesencephalic fissure and may reduce the need for venous sacrifice at the level of the tentorial sinuses draining the upper cerebellar surface and the tributaries of the vein of Galen.

Full access

Noritaka Komune, Satoshi Matsuo, Koichi Miki, and Albert L. Rhoton Jr.

OBJECTIVE

The application of the endoscope in the lateral skull base increases the importance of the middle ear cavity as the corridor to the skull base. The aim of this study was to define the middle ear as a route to the fundus (lateral end) of the internal acoustic canal and to propose feasible landmarks to the fundus.

METHODS

This was a cadaveric study; 34 adult cadaveric temporal bones and 2 dry bones were dissected with the aid of the endoscope and microscope to show the anatomy of the transcanal approach to the middle ear and fundus of the internal acoustic canal.

RESULTS

In the middle ear cavity, the cochleariform process is one of the key landmarks for accessing the fundus of the internal acoustic canal. The triangle formed by the anterior and posterior edges of the overhang of the round window and the cochleariform process provides a landmark to start drilling the bone to access the fundus of the internal acoustic canal.

CONCLUSIONS

The external acoustic canal and middle ear cavity combined, using endoscopic guidance, can provide a route to the fundus of the internal acoustic canal. A triangular landmark crossing the promontory has been described for reaching the meatal fundus. This transcanal approach requires an understanding of the relationship between the middle ear cavity and the fundus of the internal acoustic canal and provides a potential new area of cooperation between otology and neurosurgery for accessing pathology in this and the bordering skull base.

Full access

Eduardo Carvalhal Ribas, Kaan Yagmurlu, Hung Tzu Wen, and Albert L. Rhoton Jr.

OBJECT

The purpose of this study was to describe the location of each white matter pathway in the area between the inferior limiting insular sulcus (ILS) and temporal horn that may be crossed in approaches through the temporal stem to the medial temporal lobe.

METHODS

The fiber tracts in 14 adult cadaveric cerebral hemispheres were examined using the Klingler technique. The fiber dissections were completed in a stepwise manner, identifying each white matter pathway in different planes and describing its position in relation to the anterior end of the ILS.

RESULTS

The short-association fibers from the extreme capsule, which continue toward the operculae, are the most superficial subcortical layer deep to the ILS. The external capsule fibers are found deeper at an intermediate layer and are formed by the uncinate fasciculus, inferior frontooccipital fasciculus, and claustrocortical fibers in a sequential anteroposterior disposition. The anterior commissure forms the next deeper layer, and the optic radiations in the sublenticular part of the internal capsule represent the deepest layer. The uncinate fasciculus is found deep to the anterior third of the ILS, whereas the inferior frontooccipital fasciculus and optic radiations are found superficial and deep, respectively, at the posterior two-thirds of this length.

CONCLUSIONS

The authors' findings suggest that in the transsylvian approach, a 6-mm incision beginning just posterior to the limen insula through the ILS will cross the uncinate fasciculus but not the inferior frontooccipital fasciculus or optic radiations, but that longer incisions carry a risk to language and visual functions.

Full access

Tomas Poblete, Xiaochun Jiang, Noritaka Komune, Ken Matsushima, and Albert L. Rhoton Jr.

OBJECT

There continues to be confusion over how best to preserve the branches of the facial nerve to the frontalis muscle when elevating a frontotemporal (pterional) scalp flap. The object of this study was to examine the full course of the branches of the facial nerve that must be preserved to maintain innervation of the frontalis muscle during elevation of a frontotemporal scalp flap.

METHODS

Dissection was performed to follow the temporal branches of facial nerves along their course in 5 adult, cadaveric heads (n = 10 extracranial facial nerves).

RESULTS

Preserving the nerves to the frontalis muscle requires an understanding of the course of the nerves in 3 areas. The first area is on the outer surface of the temporalis muscle lateral to the superior temporal line (STL) where the interfascial or subfascial approaches are applied, the second is in the area medial to the STL where subpericranial dissection is needed, and the third is along the STL. Preserving the nerves crossing the STL requires an understanding of the complex fascial relationships at this line. It is important to preserve the nerves crossing the lateral and medial parts of the exposure, and the continuity of the nerves as they pass across the STL. Prior descriptions have focused largely on the area superficial to the temporalis muscle lateral to the STL.

CONCLUSIONS

Using the interfascial-subpericranial flap and the subfascial-subpericranial flap avoids opening the layer of loose areolar tissue between the temporal fascia and galea in the area lateral to the STL and between the galea and frontal pericranium in the area medial to the STL. It also preserves the continuity of the nerve crossing the STL. This technique allows for the preservation of the nerves to the frontalis muscle along their entire trajectory, from the uppermost part of the parotid gland to the frontalis muscle.