Rhoton

You are looking at 1 - 1 of 1 items for

  • Refine by Access: all x
  • By Author: Kalamatianos, Theodosis x
  • By Author: Emelifeonwu, John x
Clear All
Restricted access

Spyridon Komaitis, Georgios P. Skandalakis, Aristotelis V. Kalyvas, Evangelos Drosos, Evgenia Lani, John Emelifeonwu, Faidon Liakos, Maria Piagkou, Theodosis Kalamatianos, George Stranjalis, and Christos Koutsarnakis

OBJECTIVE

The aim of this study was to investigate the anatomical consistency, morphology, axonal connectivity, and correlative topography of the dorsal component of the superior longitudinal fasciculus (SLF-I) since the current literature is limited and ambiguous.

METHODS

Fifteen normal, adult, formalin-fixed cerebral hemispheres were studied through a medial to lateral fiber microdissection technique. In 5 specimens, the authors performed stepwise focused dissections of the lateral cerebral aspect to delineate the correlative anatomy between the SLF-I and the other two SLF subcomponents, namely the SLF-II and SLF-III.

RESULTS

The SLF-I was readily identified as a distinct fiber tract running within the cingulate or paracingulate gyrus and connecting the anterior cingulate cortex, the medial aspect of the superior frontal gyrus, the pre–supplementary motor area (pre-SMA), the SMA proper, the paracentral lobule, and the precuneus. With regard to the morphology of the SLF-I, two discrete segments were consistently recorded: an anterior and a posterior segment. A clear cleavage plane could be developed between the SLF-I and the cingulum, thus proving their structural integrity. Interestingly, no anatomical connection was revealed between the SLF-I and the SLF-II/SLF-III complex.

CONCLUSIONS

Study results provide novel and robust anatomical evidence on the topography, morphology, and subcortical architecture of the SLF-I. This fiber tract was consistently recorded as a distinct anatomical entity of the medial cerebral aspect, participating in the axonal connectivity of high-order paralimbic areas.