Rhoton

You are looking at 1 - 2 of 2 items for

  • Refine by Access: all x
  • By Author: Zhao, Xiaochun x
Clear All
Restricted access

Mohamed A. Labib, Xiaochun Zhao, Lena Mary Houlihan, Irakliy Abramov, Joshua S. Catapano, Komal Naeem, Mark C. Preul, A. Samy Youssef, and Michael T. Lawton

OBJECTIVE

The combined petrosal (CP) approach has been traditionally used to resect petroclival meningioma (PCM). The pretemporal transcavernous anterior petrosal (PTAP) approach has emerged as an alternative. A quantitative comparison of both approaches has not been made. This anatomical study compared the surgical corridors afforded by both approaches and identified key elements of the approach selection process.

METHODS

Twelve cadaveric specimens were dissected, and 10 were used for morphometric analysis. Groups A and B (n = 5 in each) underwent the CP and PTAP approaches, respectively. The area of drilled clivus, lengths of cranial nerves (CNs) II–X, length of posterior circulation vessels, surgical area of exposure of the brainstem, and angles of attack anterior and posterior to a common target were measured and compared.

RESULTS

The area of drilled clivus was significantly greater in group A than group B (mean ± SD 88.7 ± 17.1 mm2 vs 48.4 ± 17.9 mm2, p < 0.01). Longer segments of ipsilateral CN IV (52.4 ± 2.33 mm vs 46.5 ± 3.71 mm, p < 0.02), CN IX, and CN X (9.91 ± 3.21 mm vs 0.00 ± 0.00 mm, p < 0.01) were exposed in group A than group B. Shorter portions of CN II (9.31 ± 1.28 mm vs 17.6 ± 6.89 mm, p < 0.02) and V1 (26.9 ± 4.62 mm vs 32.4 ± 1.93 mm, p < 0.03) were exposed in group A than group B. Longer segments of ipsilateral superior cerebellar artery (SCA) were exposed in group A than group B (36.0 ± 4.91 mm vs 25.8 ± 3.55 mm, p < 0.02), but there was less exposure of contralateral SCA (0.00 ± 0.00 mm vs 7.95 ± 3.33 mm, p < 0.01). There was no statistically significant difference between groups with regard to the combined area of the exposed cerebral peduncles and pons (p = 0.75). Although exposure of the medulla was limited, group A had significantly greater exposure of the medulla than group B (p < 0.01). Finally, group A had a smaller anterior angle of attack than group B (24.1° ± 5.62° vs 34.8° ± 7.51°, p < 0.03).

CONCLUSIONS

This is the first study to quantitatively identify the advantages and limitations of the CP and PTAP approaches from an anatomical perspective. Understanding these data will aid in designing maximally effective yet minimally invasive approaches to PCM.

Restricted access

Qing Sun, Xiaochun Zhao, Sirin Gandhi, Ali Tayebi Meybodi, Evgenii Belykh, Daniel Valli, Claudio Cavallo, Leandro Borba Moreira, Peter Nakaji, Michael T. Lawton, and Mark C. Preul

OBJECTIVE

The cisternal pulvinar is a challenging location for neurosurgery. Four approaches for reaching the pulvinar without cortical transgression are the ipsilateral supracerebellar infratentorial (iSCIT), contralateral supracerebellar infratentorial (cSCIT), ipsilateral occipital transtentorial (iOCTT), and contralateral occipital transtentorial/falcine (cOCTF) approaches. This study quantitatively compared these approaches in terms of surgical exposure and maneuverability.

METHODS

Each of the 4 approaches was performed in 4 cadaveric heads (8 specimens in total). A 6-sided anatomical polygonal region was configured over the cisternal pulvinar, defined by 6 reachable anatomical points in different vectors. Multiple polygons were subsequently formed to calculate the areas of exposure. The surgical freedom of each approach was calculated as the maximum allowable working area at the proximal end of a probe, with the distal end fixed at the posterior pole of the pulvinar. Areas of exposure, surgical freedom, and the working distance (surgical depth) of all approaches were compared.

RESULTS

No significant difference was found among the 4 different approaches with regard to the surgical depth, surgical freedom, or medial exposure area of the pulvinar. In the pairwise comparison, the cSCIT approach provided a significantly larger lateral exposure (39 ± 9.8 mm2) than iSCIT (19 ± 10.3 mm2, p < 0.01), iOCTT (19 ± 8.2 mm2, p < 0.01), and cOCTF (28 ± 7.3 mm2, p = 0.02) approaches. The total exposure area with a cSCIT approach (75 ± 23.1 mm2) was significantly larger than with iOCTT (43 ± 16.4 mm2, p < 0.01) and iSCIT (40 ± 20.2 mm2, p = 0.01) approaches (pairwise, p ≤ 0.01).

CONCLUSIONS

The cSCIT approach is preferable among the 4 compared approaches, demonstrating better exposure to the cisternal pulvinar than ipsilateral approaches and a larger lateral exposure than the cOCTF approach. Both contralateral approaches described (cSCIT and cOCTF) provided enhanced lateral exposure to the pulvinar, while the cOCTF provided a larger exposure to the lateral portion of the pulvinar than the iOCTT. Medial exposure and maneuverability did not differ among the approaches. A short tentorium may negatively impact an ipsilateral approach because the cingulate isthmus and parahippocampal gyrus tend to protrude, in which case they can obstruct access to the cisternal pulvinar ipsilaterally.