Rhoton

You are looking at 1 - 7 of 7 items for

  • Refine by Access: all x
  • By Author: Spetzler, Robert F. x
Clear All
Restricted access

Daniel Dutra Cavalcanti, Bárbara Albuquerque Morais, Eberval Gadelha Figueiredo, Robert F. Spetzler, and Mark C. Preul

OBJECTIVE

The brainstem is a compact, delicate structure. The surgeon must have good anatomical knowledge of the safe entry points to safely resect intrinsic lesions. Lesions located at the lateral midbrain surface are better approached through the lateral mesencephalic sulcus (LMS). The goal of this study was to compare the surgical exposure to the LMS provided by the subtemporal (ST) approach and the paramedian and extreme-lateral variants of the supracerebellar infratentorial (SCIT) approach.

METHODS

These 3 approaches were used in 10 cadaveric heads. The authors performed measurements of predetermined points by using a neuronavigation system. Areas of microsurgical exposure and angles of the approaches were determined. Statistical analysis was performed to identify significant differences in the respective exposures.

RESULTS

The surgical exposure was similar for the different approaches—369.8 ± 70.1 mm2 for the ST; 341.2 ± 71.2 mm2 for the SCIT paramedian variant; and 312.0 ± 79.3 mm2 for the SCIT extreme-lateral variant (p = 0.13). However, the vertical angular exposure was 16.3° ± 3.6° for the ST, 19.4° ± 3.4° for the SCIT paramedian variant, and 25.1° ± 3.3° for the SCIT extreme-lateral variant craniotomy (p < 0.001). The horizontal angular exposure was 45.2° ± 6.3° for the ST, 35.6° ± 2.9° for the SCIT paramedian variant, and 45.5° ± 6.6° for the SCIT extreme-lateral variant opening, presenting no difference between the ST and extreme-lateral variant (p = 0.92), but both were superior to the paramedian variant (p < 0.001). Data are expressed as the mean ± SD.

CONCLUSIONS

The extreme-lateral SCIT approach had the smaller area of surgical exposure; however, these differences were not statistically significant. The extreme-lateral SCIT approach presented a wider vertical and horizontal angle to the LMS compared to the other craniotomies. Also, it provides a 90° trajectory to the sulcus that facilitates the intraoperative microsurgical technique.

Full access

Feres Chaddad-Neto, Marcos Devanir Silva da Costa, Baran Bozkurt, Hugo Leonardo Doria-Netto, Daniel de Araujo Paz, Ricardo da Silva Centeno, Andrew W. Grande, Sergio Cavalheiro, Kaan Yağmurlu, Robert F. Spetzler, and Mark C. Preul

OBJECTIVE

The authors report a novel surgical route from a superior anatomical aspect—the contralateral anterior interhemispheric-transcallosal-transrostral approach—to a lesion located in the subcallosal region. The neurosurgical approach to the subcallosal region is challenging due to its deep location and close relationship with important vascular structures. Anterior and inferior routes to the subcallosal region have been described but risk damaging the branches of the anterior cerebral artery.

METHODS

Three formalin-fixed and silicone-injected adult cadaveric heads were studied to demonstrate the relationships between the transventricular surgical approach and the subcallosal region. The surgical, clinical, and radiological history of a 39-year-old man with a subcallosal cavernous malformation was retrospectively used to document the neurological examination and radiographic parameters of such a case.

RESULTS

The contralateral anterior interhemispheric-transcallosal-transrostral approach provides access to the subcallosal area that also includes the inferior portion of the pericallosal cistern, lamina terminalis cistern, the paraterminal and paraolfactory gyri, and the anterior surface of the optic chiasm. The approach avoids the neurocritical perforating branches of the anterior communicating artery.

CONCLUSIONS

The contralateral anterior interhemispheric-transcallosal-transrostral approach may be an alternative route to subcallosal area lesions, with less risk to the branches of the anterior cerebral artery, particularly the anterior communicating artery perforators.

Free access

M. Yashar S. Kalani, Kaan Yağmurlu, and Robert F. Spetzler

The authors describe the interpeduncular fossa safe entry zone as a route for resection of ventromedial midbrain lesions. To illustrate the utility of this novel safe entry zone, the authors provide clinical data from 2 patients who underwent contralateral orbitozygomatic transinterpeduncular fossa approaches to deep cavernous malformations located medial to the oculomotor nerve (cranial nerve [CN] III). These cases are supplemented by anatomical information from 6 formalin-fixed adult human brainstems and 4 silicone-injected adult human cadaveric heads on which the fiber dissection technique was used.

The interpeduncular fossa may be incised to resect anteriorly located lesions that are medial to the oculomotor nerve and can serve as an alternative to the anterior mesencephalic safe entry zone (i.e., perioculomotor safe entry zone) for resection of ventromedial midbrain lesions. The interpeduncular fossa safe entry zone is best approached using a modified orbitozygomatic craniotomy and uses the space between the mammillary bodies and the top of the basilar artery to gain access to ventromedial lesions located in the ventral mesencephalon and medial to the oculomotor nerve.

Full access

Kaan Yağmurlu, Hasan A. Zaidi, M. Yashar S. Kalani, Albert L. Rhoton Jr., Mark C. Preul, and Robert F. Spetzler

Pineal region tumors are challenging to access because they are centrally located within the calvaria and surrounded by critical neurovascular structures. The goal of this work is to describe a new surgical trajectory, the anterior interhemispheric transsplenial approach, to the pineal region and falcotentorial junction area. To demonstrate this approach, the authors examined 7 adult formalin-fixed silicone-injected cadaveric heads and 2 fresh human brain specimens. One representative case of falcotentorial meningioma treated through an anterior interhemispheric transsplenial approach is also described. Among the interhemispheric approaches to the pineal region, the anterior interhemispheric transsplenial approach has several advantages. 1) There are few or no bridging veins at the level of the pericoronal suture. 2) The parietal and occipital lobes are not retracted, which reduces the chances of approach-related morbidity, especially in the dominant hemisphere. 3) The risk of damage to the deep venous structures is low because the tumor surface reached first is relatively vein free. 4) The internal cerebral veins can be manipulated and dissected away laterally through the anterior interhemispheric route but not via the posterior interhemispheric route. 5) Early control of medial posterior choroidal arteries is obtained. The anterior interhemispheric transsplenial approach provides a safe and effective surgical corridor for patients with supratentorial pineal region tumors that 1) extend superiorly, involve the splenium of the corpus callosum, and push the deep venous system in a posterosuperior or an anteroinferior direction; 2) are tentorial and displace the deep venous system inferiorly; or 3) originate from the splenium of the corpus callosum.

Full access

Kaan Yagmurlu, M. Yashar S. Kalani, Mark C. Preul, and Robert F. Spetzler

The authors describe a safe entry zone, the superior fovea triangle, on the floor of the fourth ventricle for resection of deep dorsal pontine lesions at the level of the facial colliculus. Clinical data from a patient undergoing a suboccipital telovelar transsuperior fovea triangle approach to a deep pontine cavernous malformation were reviewed and supplemented with 6 formalin-fixed adult human brainstem and 2 silicone-injected adult human cadaveric heads using the fiber dissection technique to illustrate the utility of this novel safe entry zone. The superior fovea has a triangular shape that is an important landmark for the motor nucleus of the trigeminal, abducens, and facial nerves. The inferior half of the superior fovea triangle may be incised to remove deep dorsal pontine lesions through the floor of the fourth ventricle. The superior fovea triangle may be used as a safe entry zone for dorsally located lesions at the level of the facial colliculus.

Free access

Kaan Yagmurlu, Sam Safavi-Abbasi, Evgenii Belykh, M. Yashar S. Kalani, Peter Nakaji, Albert L. Rhoton Jr., Robert F. Spetzler, and Mark C. Preul

OBJECTIVE

The aim of this investigation was to modify the mini-pterional and mini-orbitozygomatic (mini-OZ) approaches in order to reduce the amount of tissue traumatization caused and to compare the use of the 2 approaches in the removal of circle of Willis aneurysms based on the authors' clinical experience and quantitative analysis.

METHODS

Three formalin-fixed adult cadaveric heads injected with colored silicone were examined. Surgical freedom and angle of attack of the mini-pterional and mini-OZ approaches were measured at 9 anatomical points, and the measurements were compared. The authors also retrospectively reviewed the cases of 396 patients with ruptured and unruptured single aneurysms in the circle of Willis treated by microsurgical techniques at their institution between January 2006 and November 2014.

RESULTS

A significant difference in surgical freedom was found in favor of the mini-pterional approach for access to the ipsilateral internal carotid artery (ICA) and middle cerebral artery (MCA) bifurcations, the most distal point of the ipsilateral posterior cerebral artery (PCA), and the basilar artery (BA) tip. No statistically significant differences were found between the mini-pterional and mini-OZ approaches for access to the posterior clinoid process, the most distal point of the superior cerebellar artery (SCA), the anterior communicating artery (ACoA), the contralateral ICA bifurcation, and the most distal point of the contralateral MCA. A trend toward increasing surgical freedom was found for the mini-OZ approach to the ACoA and the contralateral ICA bifurcation. The lengths exposed through the mini-OZ approach were longer than those exposed by the mini-pterional approach for the ipsilateral PCA segment (11.5 ± 1.9 mm) between the BA and the most distal point of the P2 segment of the PCA, for the ipsilateral SCA (10.5 ± 1.1 mm) between the BA and the most distal point of the SCA, and for the contralateral anterior cerebral artery (ACA) (21 ± 6.1 mm) between the ICA bifurcation and the most distal point of the A2 segment of the ACA. The exposed length of the contralateral MCA (24.2 ± 8.6 mm) between the contralateral ICA bifurcation and the most distal point of the MCA segment was longer through the mini-pterional approach. The vertical angle of attack (anteroposterior direction) was significantly greater with the mini-pterional approach than with the mini-OZ approach, except in the ACoA and contralateral ICA bifurcation. The horizontal angle of attack (mediolateral direction) was similar with both approaches, except in the ACoA, contralateral ICA bifurcation, and contralateral MCA bifurcation, where the angle was significantly increased in the mini-OZ approach.

CONCLUSIONS

The mini-pterional and mini-OZ approaches, as currently performed in select patients, provide less tissue traumatization (i.e., less temporal muscle manipulation, less brain parenchyma retraction) from the skin to the aneurysm than standard approaches. Anatomical quantitative analysis showed that the mini-OZ approach provides better exposure to the contralateral side for controlling the contralateral parent arteries and multiple aneurysms. The mini-pterional approach has greater surgical freedom (maneuverability) for ipsilateral circle of Willis aneurysms.

Free access

João Luiz Vitorino Araujo, José C. E. Veiga, Hung Tzu Wen, Almir F. de Andrade, Manoel J. Teixeira, José P. Otoch, Albert L. Rhoton Jr., Mark C. Preul, Robert F. Spetzler, and Eberval G. Figueiredo

OBJECTIVE

Access to the third ventricle is a veritable challenge to neurosurgeons. In this context, anatomical and morphometric studies are useful for establishing the limitations and advantages of a particular surgical approach. The transchoroidal approach is versatile and provides adequate exposure of the middle and posterior regions of the third ventricle. However, the fornix column limits the exposure of the anterior region of the third ventricle. There is evidence that the unilateral section of the fornix column has little effect on cognitive function. This study compared the anatomical exposure afforded by the transforniceal-transchoroidal approach with that of the transchoroidal approach. In addition, a morphometric evaluation of structures that are relevant to and common in the 2 approaches was performed.

METHODS

The anatomical exposure provided by the transcallosal-transchoroidal and transcallosal-transforniceal-transchoroidal approaches was compared in 8 fresh cadavers, using a neuronavigation system. The working area, microsurgical exposure area, and angular exposure on the longitudinal and transversal planes of 2 anatomical targets (tuber cinereum and cerebral aqueduct) were compared. Additionally, the thickness of the right frontal lobe parenchyma, thickness of the corpus callosum trunk, and longitudinal diameter of the interventricular foramen were measured. The values obtained were submitted to statistical analysis using the Wilcoxon test.

RESULTS

In the quantitative evaluation, compared with the transchoroidal approach, the transforniceal-transchoroidal approach provided a greater mean working area (transforniceal-transchoroidal 150 ± 11 mm2; transchoroidal 121 ± 8 mm2; p < 0.05), larger mean microsurgical exposure area (transforniceal-transchoroidal 101 ± 9 mm2; transchoroidal 80 ± 5 mm2; p < 0.05), larger mean angular exposure area on the longitudinal plane for the tuber cinereum (transforniceal-transchoroidal 71° ± 7°; transchoroidal 64° ± 6°; p < 0.05), and larger mean angular exposure area on the longitudinal plane for the cerebral aqueduct (transforniceal-transchoroidal 62° ± 6°; transchoroidal 55° ± 5°; p < 0.05). No differences were observed in angular exposure along the transverse axis for either anatomical target (tuber cinereum and cerebral aqueduct; p > 0.05). The mean thickness of the right frontal lobe parenchyma was 35 ± 3 mm, the mean thickness of the corpus callosum trunk was 10 ± 1 mm, and the mean longitudinal diameter of the interventricular foramen was 4.6 ± 0.4 mm. In the qualitative assessment, it was noted that the transforniceal-transchoroidal approach led to greater exposure of the third ventricle anterior region structures. There was no difference between approaches in the exposure of the structures of the middle and posterior region.

CONCLUSIONS

The transforniceal-transchoroidal approach provides greater surgical exposure of the third ventricle anterior region than that offered by the transchoroidal approach. In the population studied, morphometric analysis established mean values for anatomical structures common to both approaches.