You are looking at 1 - 2 of 2 items for

  • Refine by Access: all x
  • By Author: Carrau, Ricardo L. x
Clear All
Full access

Quantitative analysis of the surgical exposure and surgical freedom between transcranial and transorbital endoscopic anterior petrosectomies to the posterior fossa

Raywat Noiphithak, Juan C. Yanez-Siller, Juan Manuel Revuelta Barbero, Bradley A. Otto, Ricardo L. Carrau, and Daniel M. Prevedello


This study proposes a variation of the transorbital endoscopic approach (TOEA) that uses the lateral orbit as the primary surgical corridor, in a minimally invasive fashion, for the posterior fossa (PF) access. The versatility of this technique was quantitatively analyzed in comparison with the anterior transpetrosal approach (ATPA), which is commonly used for managing lesions in the PF.


Anatomical dissections were carried out in 5 latex-injected human cadaveric heads (10 sides). During dissection, the PF was first accessed by TOEAs through the anterior petrosectomy, both with and without lateral orbital rim osteotomies (herein referred as the lateral transorbital approach [LTOA] and the lateral orbital wall approach [LOWA], respectively). ATPAs were performed following the orbital approaches. The stereotactic measurements of the area of exposure, surgical freedom, and angles of attack to 5 anatomical targets were obtained for statistical comparison by the neuronavigator.


The LTOA provided the smallest area of exposure (1.51 ± 0.5 cm2, p = 0.07), while areas of exposure were similar between LOWA and ATPA (1.99 ± 0.7 cm2 and 2.01 ± 1.0 cm2, respectively; p = 0.99). ATPA had the largest surgical freedom, whereas that of LTOA was the most restricted. Similarly, for all targets, the vertical and horizontal angles of attack achieved with ATPA were significantly broader than those achieved with LTOA. However, in LOWA, the removal of the lateral orbital rim allowed a broader range of movement in the horizontal plane, thus granting a similar horizontal angle for 3 of the 5 targets in comparison with ATPA.


The TOEAs using the lateral orbital corridor for PF access are feasible techniques that may provide a comparable surgical exposure to the ATPA. Furthermore, the removal of the orbital rim showed an additional benefit in an enhancement of the surgical maneuverability in the PF.

Restricted access

Anatomical nuances of the internal carotid artery in relation to the quadrangular space

Ricardo L. L. Dolci, Leo F. S. Ditzel Filho, Carlos R. Goulart, Smita Upadhyay, Lamia Buohliqah, Paulo R. Lazarini, Daniel M. Prevedello, and Ricardo L. Carrau


The aim of this study was to evaluate the anatomical variations of the internal carotid artery (ICA) in relation to the quadrangular space (QS) and to propose a classification system based on the results.


A total of 44 human cadaveric specimens were dissected endonasally under direct endoscopic visualization. During the dissection, the anatomical variations of the ICA and their relationship with the QS were noted.


The space between the paraclival ICAs (i.e., intercarotid space) can be classified as 1 of 3 different shapes (i.e., trapezoid, square, or hourglass) based on the trajectory of the ICAs. The ICA trajectories also directly influence the volumetric area of the QS. Based on its geometry, the QS was classified as one of the following: 1) Type A has the smallest QS area and is associated with a trapezoid intercarotid space, 2) Type B corresponds to the expected QS area (not minimized or enlarged) and is associated with a square intercarotid space, and 3) Type C has the largest QS area and is associated with an hourglass intercarotid space.


The different trajectories of the ICAs can modify the area of the QS and may be an essential parameter to consider for preoperative planning and defining the most appropriate corridor to reach Meckel's cave. In addition, ICA trajectories should be considered prior to surgery to avoid injuring the vessels.