Parkinson Disease - Top 25

September 2010, Volume 113, Issue 3

Parkinson Disease: Top 25 Cited Articles

You are looking at 1 - 2 of 2 items for

  • By Author: Gross, Christian x
Clear All
Restricted access

Emmanuel Cuny, Dominique Guehl, Pierre Burbaud, Christian Gross, Vincent Dousset and Alain Rougier

Object. The goal of this study was to determine the most suitable procedure(s) to localize the optimal site for high-frequency stimulation of the subthalamic nucleus (STN) for the treatment of advanced Parkinson disease.

Methods. Stereotactic coordinates of the STN were determined in 14 patients by using three different methods: direct identification of the STN on coronal and axial T2-weighted magnetic resonance (MR) images and indirect targeting in which the STN coordinates are referred to the anterior commissure—posterior commissure (AC—PC) line, which, itself, is determined either by using stereotactic ventriculography or reconstruction from three-dimensional (3D) MR images. During the surgical procedure, electrode implantation was guided by single-unit microrecordings on multiple parallel trajectories and by clinical assessment of stimulations. The site where the optimal functional response was obtained was considered to be the best target. Computerized tomography scanning was performed 3 days later and the scans were combined with preoperative 3D MR images to transfer the position of the best target to the same system of stereotactic coordinates. An algorithm was designed to convert individual stereotactic coordinates into an all-purpose PC-referenced system for comparing the respective accuracy of each method of targeting, according to the position of the best target.

Conclusions. The target that is directly identified by MR imaging is more remote (mainly in the lateral axis) from the site of the optimal functional response than targets obtained using other procedures, and the variability of this method in the lateral and superoinferior axes is greater. In contrast, the target defined by 3D MR imaging is closest to the target of optimal functional response and the variability of this method is the least great. Thus, 3D reconstruction adjusted to the AC—PC line is the most accurate technique for STN targeting, whereas direct visualization of the STN on MR images is the least effective. Electrophysiological guidance makes it possible to correct the inherent inaccuracy of the imaging and surgical techniques and is not designed to modify the initial targeting.

Restricted access

Christian Gross, Alain Rougier, Dominique Guehl, Thomas Boraud, Jean Julien and Bernard Bioulac

✓ The effectiveness of ventroposterolateral pallidotomy in the treatment of akinesia and rigidity is not a new discovery and agrees with recent investigations into the pathogenesis of Parkinson's disease, which highlight the role played by the unbridled activity of the subthalamic nucleus (STN) and the consequent overactivity of the globus pallidus internalis (GPi). Because high-frequency stimulation can reversibly incapacitate a nerve structure, we applied stimulation to the same target.

Seven patients suffering from severe Parkinson's disease (Stages III–V on the Hoehn and Yahr scale) and, particularly, bradykinesia, rigidity, and levodopa-induced dyskinesias underwent unilateral electrode implantation in the posteroventral GPi. Follow-up evaluation using the regular Unified Parkinson's Disease Rating Scale has been conducted for 1 year in all seven patients, 2 years in five of them, and 3 years in one. In all cases high-frequency stimulation has alleviated akinesia and rigidity and has generally improved gait and speech disturbances. In some cases tremor was attenuated. In a similar manner, the authors observed a marked diminution in levodopa-induced dyskinesias. This could be an excellent primary therapy for younger patients exhibiting severe bradykinesia, rigidity, and levodopa-induced dyskinesias, which would allow therapists to keep ventroposterolateral pallidotomy in reserve as a second weapon.