Leksell Top 25 - Vestibular Schwannoma

You are looking at 21 - 26 of 26 items for

  • Refine by Access: all x
Clear All
Restricted access

Immediate neurological deterioration after gamma knife radiosurgery for acoustic neuroma

Case report

Masao Tago, Atsuro Terahara, Keiichi Nakagawa, Yukimasa Aoki, Kuni Ohtomo, Masahiro Shin, and Hiroki Kurita

✓ The authors describe acute deterioration in facial and acoustic neuropathies following radiosurgery for acoustic neuromas.

In May 1995, a 26-year-old man, who had no evidence of neurofibromatosis Type 2, was treated with gamma knife radiosurgery (GKS; maximum dose 20 Gy and margin dose 14 Gy) for a right-sided intracanalicular acoustic tumor. Two days after the treatment, he developed headache, vomiting, right-sided facial weakness, tinnitus, and right hearing loss. There was a deterioration of facial nerve function and hearing function from pretreatment values. The facial function worsened from House—Brackmann Grade 1 to 3. Hearing deteriorated from Grade 1 to 5. Magnetic resonance (MR) images, obtained at the same time revealed an obvious decrease in contrast enhancement of the tumor without any change in tumor size or peritumoral edema. Facial nerve function improved gradually and increased to House—Brackmann Grade 2 by 8 months post-GKS. The tumor has been unchanged in size for 5 years, and facial nerve function has also been maintained at Grade 2 with unchanged deafness.

This is the first detailed report of immediate facial neuropathy after GKS for acoustic neuroma and MR imaging revealing early possibly toxic changes. Potential explanations for this phenomenon are presented.

Restricted access

Sequential volume mapping for confirmation of negative growth in vestibular schwannomas treated by gamma knife radiosurgery

Chung Ping Yu, Joel Yiu Chung Cheung, Samuel Leung, and Robert Ho

Object. The purpose of this study was to confirm, by using a sequential volume mapping (SVM) technique, that gamma knife radiosurgery (GKS) induces negative growth in vestibular schwannomas (VS).

Methods. Over a period of 5 years, 126 small- to medium-sized (< 15 cm3) VSs were treated using microradiosurgical techniques within a standard protocol. All patient data were collected prospectively. Sequential magnetic resonance imaging was performed every 6 months to assess the volume of the tumor, based on specially developed GammaPlan software. The mean follow-up duration was 22 months. At least three SVM measurements were obtained in 91 patients and at least four were obtained in 62 patients. The mean number of SVM measurements for each patient was 2.54. After GKS, the following patterns of volume change were seen: 1) 57 VSs showed transient increase in volume with a peak at 6 months, followed by shrinkage. Four VSs exhibited prolonged swelling beyond 24 months. Transient swelling and eventual shrinkage were independent of the initial VS volume; 2) 29 VSs showed direct volume shri6nkage without swelling; and 3) five VSs showed persistent volume increase. All volume changes were greater than 10%. The overall mean volume reduction was 46.8% at 30 months.

Conclusions. Sequential volume mapping appears to be superior to conventional two-dimensional measurements in monitoring volume changes in VS after GKS. It confirms that transient swelling is common. Ninety-two percent of tumors responded by showing significant volume shrinkage (mean 46.8%). It would seem that GKS can induce volume reduction in VS.

Restricted access

Stereotactic radiosurgery versus stereotactic radiotherapy for patients with vestibular schwannoma: a Leksell Gamma Knife Society 2000 debate

Mark E. Linskey

✓ By definition, the term “radiosurgery” refers to the delivery of a therapeutic radiation dose in a single fraction, not simply the use of stereotaxy. Multiple-fraction delivery is better termed “stereotactic radiotherapy.” There are compelling radiobiological principles supporting the biological superiority of single-fraction radiation for achieving an optimal therapeutic response for the slowly proliferating, late-responding, tissue of a schwannoma. It is axiomatic that complication avoidance requires precise three-dimensional conformality between treatment and tumor volumes. This degree of conformality can only be achieved through complex multiisocenter planning. Alternative radiosurgery devices are generally limited to delivering one to four isocenters in a single treatment session. Although they can reproduce dose plans similar in conformality to early gamma knife dose plans by using a similar number of isocenters, they cannot reproduce the conformality of modern gamma knife plans based on magnetic resonance image—targeted localization and five to 30 isocenters.

A disturbing trend is developing in which institutions without nongamma knife radiosurgery (GKS) centers are championing and/or shifting to hypofractionated stereotactic radiotherapy for vestibular schwannomas. This trend appears to be driven by a desire to reduce complication rates to compete with modern GKS results by using complex multiisocenter planning. Aggressive advertising and marketing from some of these centers even paradoxically suggests biological superiority of hypofractionation approaches over single-dose radiosurgery for vestibular schwannomas. At the same time these centers continue to use the term radiosurgery to describe their hypofractionated radiotherapy approach in an apparent effort to benefit from a GKS “halo effect.” It must be reemphasized that as neurosurgeons our primary duty is to achieve permanent tumor control for our patients and not to eliminate complications at the expense of potential late recurrence. The answer to minimizing complications while maintaining maximum tumor control is improved conformality of radiosurgery dose planning and not resorting to homeopathic radiosurgery doses or hypofractionation radiotherapy schemes.

Restricted access

Gamma surgery for vestibular schwannoma

Dheerendra Prasad, Melita Steiner, and Ladislau Steiner

Object. The goal of this study was to assess the results of gamma surgery (GS) for vestibular schwannoma (VS) in 200 cases treated over the last 10 years and to review the role of this neurosurgical procedure in the management of VS.

Methods. Follow-up reviews ranging from 1 to 10 years were available in 153 of these patients. Follow-up images in these cases were analyzed using computer software that we developed to obtain volume measurements for the tumors, and the clinical condition of the patients was assessed using questionnaires.

Gamma surgery was the primary treatment modality in 96 cases and followed microsurgery in 57 cases. Tumors ranged in volume from 0.02 to 18.3 cm3. In the group in which GS was the primary treatment, a decrease in volume was observed in 78 cases (81%), no change in 12 (12%), and an increase in volume in six cases (6%). The decrease was more than 75% in seven cases. In the group treated following microsurgery, a decrease in volume was observed in 37 cases (65%), no change in 14 (25%), and an increase in volume in six (11%). The decrease was more than 75% in eight cases. Five patients experienced trigeminal dysfunction; in three cases this was transient and in the other two it was persistent, although there has been improvement. Three patients had facial paresis (in one case this was transient, lasting 6 weeks; in one case there was 80% recovery at 18 months posttreatment; and in one case surgery was performed after the onset of facial paresis for presumed increase in tumor size). Over a 6-year period, hearing deteriorated in 60% of the patients. Three patients showed an improvement in hearing. No hearing deterioration was observed during the first 2 years of follow-up review.

Conclusions. Gamma surgery should be used to treat postoperative residual tumors as well as tumors in patients with medical conditions that preclude surgery. Microsurgery should be performed whenever a surgeon is confident of extirpating the tumor with a risk—benefit ratio superior to that presented in this study.

Restricted access

Stereotactic radiosurgery in the management of acoustic neuromas associated with neurofibromatosis Type 2

Brian R. Subach, Douglas Kondziolka, L. Dade Lunsford, David J. Bissonette, John C. Flickinger, and Ann H. Maitz

Object. Stereotactically guided radiosurgery is one of the primary treatment modalities for patients with acoustic neuromas (vestibular schwannomas). The goal of radiosurgery is to arrest tumor growth while preserving neurological function. Patients with acoustic neuromas associated with neurofibromatosis Type 2 (NF2) represent a special challenge because of the risk of complete deafness. To define better the tumor control rate and long-term functional outcome, the authors reviewed their 10-year experience in treating these lesions.

Methods. Forty patients underwent stereotactic radiosurgery at the University of Pittsburgh, 35 of them for solitary tumors. The other five underwent staged procedures for bilateral lesions (10 tumors, 45 total). Thirteen patients (with 29% of tumors) had undergone a median of two prior resections. The mean tumor volume at radiosurgery was 4.8 ml, and the mean tumor margin dose was 15 Gy (range 12–20 Gy).

The overall tumor control rate was 98%. During the median follow-up period of 36 months, 16 tumors (36%) regressed, 28 (62%) remained unchanged, and one (2%) grew. In the 10 patients for whom more than 5 years of clinical and neuroimaging follow-up results were available (median 92 months), five tumors were smaller and five remained unchanged. Surgical resection was performed in three patients (7%) after radiosurgery; only one showed radiographic evidence of progression. Useful hearing (Gardner—Robertson Class I or II) was preserved in six (43%) of 14 patients, and this rate improved to 67% after modifications made in 1992. Normal facial nerve function (House—Brackmann Grade 1) was preserved in 25 (81%) of 31 patients. Normal trigeminal nerve function was preserved in 34 (94%) of 36 patients.

Conclusions. Stereotactically guided radiosurgery is a safe and effective treatment for patients with acoustic tumors in the setting of NF2. The rate of hearing preservation may be better with radiosurgery than with other available techniques.

Restricted access

Vestibular schwannoma management

Part II. Failed radiosurgery and the role of delayed microsurgery

Bruce E. Pollock, L. Dade Lunsford, Douglas Kondziolka, Raymond Sekula, Brian R. Subach, Robert L. Foote, and John C. Flickinger

Object. The indications, operative findings, and outcomes of vestibular schwannoma microsurgery are controversial when it is performed after stereotactic radiosurgery. To address these issues, the authors reviewed the experience at two academic medical centers.

Methods. During a 10-year interval, 452 patients with unilateral vestibular schwannomas underwent gamma knife radiosurgery. Thirteen patients (2.9%) underwent delayed microsurgery at a median of 27 months (range 7–72 months) after they had undergone radiosurgery. Six of the 13 patients had undergone one or more microsurgical procedures before they underwent radiosurgery. The indications for surgery were tumor enlargement with stable symptoms in five patients, tumor enlargement with new or increased symptoms in five patients, and increased symptoms without evidence of tumor growth in three patients. Gross-total resection was achieved in seven patients and near-gross-total resection in four patients. The surgery was described as more difficult than that typically performed for schwannoma in eight patients, no different in four patients, and easier in one patient. At the last follow-up evaluation, three patients had normal or near-normal facial function, three patients had moderate facial dysfunction, and seven had facial palsies. Three patients were incapable of caring for themselves, and one patient died of progression of a malignant triton tumor.

Conclusions. Failed radiosurgery in cases of vestibular schwannoma was rare. No clear relationship was demonstrated between the use of radiosurgery and the subsequent ease or difficulty of delayed microsurgery. Because some patients have temporary enlargement of their tumor after radiosurgery, the need for surgical resection after radiosurgery should be reviewed with the neurosurgeon who performed the radiosurgery and should be delayed until sustained tumor growth is confirmed. A subtotal tumor resection should be considered for patients who require surgical resection of their tumor after vestibular schwannoma radiosurgery.