Leksell Top 25 - Meningioma

You are looking at 1 - 3 of 3 items for

  • Refine by Access: user x
Clear All
Full access

Jason P. Sheehan, Robert M. Starke, Hideyuki Kano, Gene H. Barnett, David Mathieu, Veronica Chiang, James B. Yu, Judith Hess, Heyoung L. McBride, Norissa Honea, Peter Nakaji, John Y. K. Lee, Gazanfar Rahmathulla, Wendi A. Evanoff, Michelle Alonso-Basanta, and L. Dade Lunsford

OBJECT

Posterior fossa meningiomas represent a common yet challenging clinical entity. They are often associated with neurovascular structures and adjacent to the brainstem. Resection can be undertaken for posterior fossa meningiomas, but residual or recurrent tumor is frequent. Stereotactic radiosurgery (SRS) has been used to treat meningiomas, and this study evaluates the outcome of this approach for those located in the posterior fossa.

METHODS

At 7 medical centers participating in the North American Gamma Knife Consortium, 675 patients undergoing SRS for a posterior fossa meningioma were identified, and clinical and radiological data were obtained for these cases. Females outnumbered males at a ratio of 3.8 to 1, and the median patient age was 57.6 years (range 12–89 years). Prior resection was performed in 43.3% of the patient sample. The mean tumor volume was 6.5 cm3, and a median margin dose of 13.6 Gy (range 8–40 Gy) was delivered to the tumor.

RESULTS

At a mean follow-up of 60.1 months, tumor control was achieved in 91.2% of cases. Actuarial tumor control was 95%, 92%, and 81% at 3, 5, and 10 years after radiosurgery. Factors predictive of tumor progression included age greater than 65 years (hazard ratio [HR] 2.36, 95% CI 1.30–4.29, p = 0.005), prior history of radiotherapy (HR 5.19, 95% CI 1.69–15.94, p = 0.004), and increasing tumor volume (HR 1.05, 95% CI 1.01–1.08, p = 0.005). Clinical stability or improvement was achieved in 92.3% of patients. Increasing tumor volume (odds ratio [OR] 1.06, 95% CI 1.01–1.10, p = 0.009) and clival, petrous, or cerebellopontine angle location as compared with petroclival, tentorial, and foramen magnum location (OR 1.95, 95% CI 1.05–3.65, p = 0.036) were predictive of neurological decline after radiosurgery. After radiosurgery, ventriculoperitoneal shunt placement, resection, and radiation therapy were performed in 1.6%, 3.6%, and 1.5%, respectively.

CONCLUSIONS

Stereotactic radiosurgery affords a high rate of tumor control and neurological preservation for patients with posterior fossa meningiomas. Those with a smaller tumor volume and no prior radiation therapy were more likely to have a favorable response after radiosurgery. Rarely, additional procedures may be required for hydrocephalus or tumor progression.

Full access

Robert M. Starke, Colin J. Przybylowski, Mukherjee Sugoto, Francis Fezeu, Ahmed J. Awad, Dale Ding, James H. Nguyen, and Jason P. Sheehan

OBJECT

Stereotactic radiosurgery (SRS) has become a common treatment modality for intracranial meningiomas. Skull base meningiomas greater than 8 cm3 in volume have been found to have worse outcomes following SRS. When symptomatic, patients with these tumors are often initially treated with resection. For tumors located in close proximity to eloquent structures or in patients unwilling or unable to undergo a resection, SRS may be an acceptable therapeutic approach. In this study, the authors review the SRS outcomes of skull base meningiomas greater than 8 cm3 in volume, which corresponds to a lesion with an approximate diameter of 2.5 cm.

METHODS

The authors reviewed the data in a prospectively compiled database documenting the outcomes of 469 patients with skull base meningiomas treated with single-session Gamma Knife radiosurgery (GKRS). Seventy-five patients had tumors greater than 8 cm3 in volume, which was defined as a large tumor. All patients had a minimum follow-up of 6 months, but patients were included if they had a complication at any time point. Thirty patients were treated with upfront GKRS, and 45 were treated following microsurgery. Patient and tumor characteristics were assessed to determine predictors of new or worsening neurological function and tumor progression following GKRS.

RESULTS

After a mean follow-up of 6.5 years (range 0.5–21 years), the tumor volume was unchanged in 37 patients (49%), decreased in 26 patients (35%), and increased in 12 patients (16%). Actuarial rates of progression-free survival at 3, 5, and 10 years were 90.3%, 88.6%, and 77.2%, respectively. Four patients had new or worsened edema following GKRS, but preexisting edema decreased in 3 patients. In Cox multivariable analysis, covariates associated with tumor progression were 1) presentation with any cranial nerve (CN) deficit from III to VI (hazard ratio [HR] 3.78, 95% CI 1.91–7.45; p < 0.001), history of radiotherapy (HR 12.06, 95% CI 2.04–71.27; p = 0.006), and tumor volume greater than 14 cm3 (HR 6.86, 95% CI 0.88–53.36; p = 0.066). In those patients with detailed clinical follow-up (n = 64), neurological function was unchanged in 37 patients (58%), improved in 16 patients (25%), and deteriorated in 11 patients (17%). In multivariate analysis, the factors predictive of new or worsening neurological function were history of surgery (OR 3.00, 95% CI 1.13–7.95; p = 0.027), presentation with any CN deficit from III to VI (OR 3.94, 95% CI 1.49–10.24; p = 0.007), and decreasing maximal dose (OR 0.76, 95% CI 0.63–0.93; p = 0.007). Tumor progression was present in 64% of patients with new or worsening neurological decline.

CONCLUSIONS

Stereotactic radiosurgery affords a reasonable rate of tumor control for large skull base meningiomas and does so with a low incidence of neurological deficits. Those with a tumor less than 14 cm3 in volume and without presenting CN deficit from III to VI were more likely to have effective tumor control.