Deep Brain Stimulation

You are looking at 1 - 1 of 1 items for

  • By Author: Jaggi, Jurg L. x
  • By Author: Lin Liang, Grace S. x
Clear All
Restricted access

Galit Kleiner-Fisman, Grace S. Lin Liang, Paul J. Moberg, Anthony C. Ruocco, Howard I. Hurtig, Gordon H. Baltuch, Jurg L. Jaggi and Matthew B. Stern

Object

Medically refractory dystonia has recently been treated using deep brain stimulation (DBS) targeting the globus pallidus internus (GPI). Outcomes have varied depending on the features of the dystonia. There has been limited literature regarding outcomes for refractory dystonia following DBS of the subthalamic nucleus (STN).

Methods

Four patients with medically refractory, predominantly cervical dystonia underwent STN DBS. Intraoperative assessments with the patients in a state of general anesthesia were performed to determine the extent of fixed deformities that might predict outcome. Patients were rated using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) and the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) preoperatively and 3 and 12 months following surgery by a rater blinded to the study. Mean changes and standard errors of the mean in scores were calculated for each subscore of the two scales. Scores were also analyzed using analysis of variance and probability values were generated. Neuropsychological assessments and quality of life ratings using the 36-Item Short Form Health Survey (SF-36) were evaluated longitudinally.

Results

Significant improvements were seen in motor (p = 0.04), disability (p = 0.02), and total TWSTRS scores (p = 0.03). Better outcomes were seen in those patients who did not have fixed deformities. There was marked improvement in the mental component score of the SF-36. Neuropsychological function was not definitively impacted as a result of the surgery.

Conclusions

Deep brain stimulation of the STN is a novel target for dystonia and may be an alternative to GPI DBS. Further studies need to be performed to confirm these conclusions and to determine optimal candidates and stimulation parameters.