Deep Brain Stimulation

You are looking at 1 - 2 of 2 items for

  • By Author: Winfield, Linda M. x
Clear All
Full access

Shearwood McClelland III, Brian Kim, Linda M. Winfield, Blair Ford, Tresha A. Edwards, Seth L. Pullman, Qiping Yu, Guy M. McKhann II and Robert R. Goodman

Object

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become a popular treatment for patients with medically refractory Parkinson disease. Many surgeons believe that microelectrode recording (MER) during DBS electrode implantation is needed to optimize placement, whereas stimulation-induced side effects such as paresthesias, dystonic contractions, dyskinesias, and ocular motor signs that become apparent postoperatively may be an indicator of the proximity of the electrode to various boundaries of the STN. This study was performed to evaluate the relationship between mapping of the STN by using MER and postoperative stimulation-induced side effects.

Methods

Eighty-two electrodes implanted in 75 patients between March 1999 and March 2003 were retrospectively examined to evaluate the length of the STN defined by MER, and the number of and threshold for postoperative stimulation-induced side effects. Electrodes were typically tested with increasing stimulation amplitudes (maximum 6 V) by using a monopolar array.

The 82 electrodes were associated with 97 stimulation-induced side effects. The mean time between surgery and testing stimulation-induced side effects was 3.9 months. Statistical analysis (two-tailed t-test) revealed no significant difference in the number of stimulation-induced side effects (or the mean threshold for paresthesias, the most common side effect) for electrodes associated with an STN length less than 4.5 mm (13 electrodes) compared with those associated with an STN greater than or equal to 4.5 mm (69 electrodes, p = 0.616). For every electrode, the target adjustment based on MER results was within 2 mm of the image-planned target (usually 1 mm anterior). In the x axis (medial–lateral orientation), there was no systematic difference in adjustments made for the electrodes associated with the shorter compared with the longer STN lengths. In the y axis (anterior–posterior orientation), there was a very small statistically significant difference in the mean adjustment (0.4 mm) between the two groups.

Conclusions

Analysis of these results suggests that a shorter MER-determined STN length alone does not reliably predict the incidence of stimulation-induced side effects.

Full access

Shearwood McClelland III, Blair Ford, Patrick B. Senatus, Linda M. Winfield, Yunling E. Du, Seth L. Pullman, Qiping Yu, Steven J. Frucht, Guy M. McKhann II and Robert R. Goodman

Object

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) performed using intraoperative microelectrode recording (MER) to adjust electrode placement has become a widely used treatment for patients with advanced Parkinson disease (PD). Few studies have been conducted to examine the location of implanted electrodes relative to the intended target, and even fewer have been undertaken to investigate the degree to which variations in the location of these electrodes impacts their clinical efficacy. This study was performed to examine these issues.

Methods

The authors located 52 bilaterally implanted DBS electrode tips on postoperative magnetic resonance (MR) images obtained in 26 consecutive patients. Postoperative and preoperative planning MR images were merged to determine the DBS electrode tip coordinates relative to the midcommissural point. Surgical records listed the intended target coordinates for each DBS electrode tip. Clinical outcome assessment included the Unified PD Rating Scale (UPDRS) motor score at 1 year, standardized questionnaires, and routine follow-up visits.

The mean difference between electrode tip location and intended target for all 52 electrodes was less than 2 mm in all axes. Only one electrode was farther than 3 mm from the intended target, and this was the only electrode that had to be replaced due to lack of clinical efficacy (lack of tremor suppression); its reimplantation 4 mm more medially provided excellent tremor control. High correlation coefficients indicate that the MR imaging analysis accurately determined the anatomical location of the electrode tips. Blinded videotape reviews of UPDRS motor scores comparing effects of stimulation in patients who were “on” and “off” medication identified subgroups in whom there was minimal and maximal stimulation response. Patients in these subgroups had no differences between the MR imaging–determined actual electrode tip location and its intended location. Similarly, improvements of dyskinesias and severity of symptoms encountered during the wearing-off period for the drug did not correlate with variations of electrode tip location.

Conclusions

The findings in this study lead the authors to suggest that a DBS electrode placed anywhere within a 6-mm-diameter cylinder centered at the presumed middle of the STN (based on stereotactic atlas coordinates) provides similar clinical efficacy. Future studies may be warranted to evaluate prospectively the degree to which MER modification of the anatomically and/or image-determined target improves clinical efficacy of DBS electrodes.