Deep Brain Stimulation

You are looking at 1 - 2 of 2 items for

  • By Author: Senatus, Patrick B. x
Clear All
Full access

Patrick B. Senatus, David Teeple, Shearwood McClelland III, Seth L. Pullman, Qiping Yu, Blair Ford, Guy M. McKhann II and Robert R. Goodman

Object

Implantation of a subthalamic nucleus (STN) deep brain stimulation (DBS) electrode is increasingly recognized as an effective treatment for advanced Parkinson disease (PD). Despite widespread use of microelectrode recording (MER) to delineate the boundaries of the STN prior to stimulator implantation, it remains unclear to what extent MER improves the clinical efficacy of this procedure. In this report, the authors analyze a series of patients who were treated at one surgical center to determine to what degree final electrode placement was altered, based on readings obtained with MER, from the calculated anatomical target.

Methods

Subthalamic DBS devices were placed bilaterally in nine patients with advanced PD. Frame-based volumetric magnetic resonance images were acquired and then transferred to a stereotactic workstation to determine the anterior and posterior commissure coordinates and plane. The initial anatomical target was 4 mm anterior, 4 mm deep, and 12 mm lateral to the midcommissural point. The MERs defined the STN boundaries along one or more parallel tracks, refining the final electrode placement by comparison of results with illustrations in a stereotactic atlas.

In eight of 18 electrodes, the MER results did not prompt an alteration in the anatomically derived target. In another eight placements, MER altered the target by less than 1 mm and two of 18 electrode positions differed by less than 2 mm. The anterior–posterior difference was 0.53 ± 0.65 mm, whereas the medial–lateral direction differed by 0.25 ± 0.43 mm. The ventral boundary of the STN defined by MER was 2 ± 0.72 mm below the calculated target (all values are the means ± standard deviation). All patients attained clinical improvement, similar to previous reports.

Conclusions

In this series of patients, microelectrode mapping of the STN altered the anatomically based target only slightly. Because it is not clear whether such minor adjustments improve clinical efficacy, a prospective clinical comparison of MER-refined and anatomical targeting may be warranted.

Full access

Shearwood McClelland III, Blair Ford, Patrick B. Senatus, Linda M. Winfield, Yunling E. Du, Seth L. Pullman, Qiping Yu, Steven J. Frucht, Guy M. McKhann II and Robert R. Goodman

Object

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) performed using intraoperative microelectrode recording (MER) to adjust electrode placement has become a widely used treatment for patients with advanced Parkinson disease (PD). Few studies have been conducted to examine the location of implanted electrodes relative to the intended target, and even fewer have been undertaken to investigate the degree to which variations in the location of these electrodes impacts their clinical efficacy. This study was performed to examine these issues.

Methods

The authors located 52 bilaterally implanted DBS electrode tips on postoperative magnetic resonance (MR) images obtained in 26 consecutive patients. Postoperative and preoperative planning MR images were merged to determine the DBS electrode tip coordinates relative to the midcommissural point. Surgical records listed the intended target coordinates for each DBS electrode tip. Clinical outcome assessment included the Unified PD Rating Scale (UPDRS) motor score at 1 year, standardized questionnaires, and routine follow-up visits.

The mean difference between electrode tip location and intended target for all 52 electrodes was less than 2 mm in all axes. Only one electrode was farther than 3 mm from the intended target, and this was the only electrode that had to be replaced due to lack of clinical efficacy (lack of tremor suppression); its reimplantation 4 mm more medially provided excellent tremor control. High correlation coefficients indicate that the MR imaging analysis accurately determined the anatomical location of the electrode tips. Blinded videotape reviews of UPDRS motor scores comparing effects of stimulation in patients who were “on” and “off” medication identified subgroups in whom there was minimal and maximal stimulation response. Patients in these subgroups had no differences between the MR imaging–determined actual electrode tip location and its intended location. Similarly, improvements of dyskinesias and severity of symptoms encountered during the wearing-off period for the drug did not correlate with variations of electrode tip location.

Conclusions

The findings in this study lead the authors to suggest that a DBS electrode placed anywhere within a 6-mm-diameter cylinder centered at the presumed middle of the STN (based on stereotactic atlas coordinates) provides similar clinical efficacy. Future studies may be warranted to evaluate prospectively the degree to which MER modification of the anatomically and/or image-determined target improves clinical efficacy of DBS electrodes.